#region License Information
/* HeuristicLab
* Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
* and the BEACON Center for the Study of Evolution in Action.
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.BinaryVectorEncoding;
using HeuristicLab.Random;
namespace HeuristicLab.Algorithms.ParameterlessPopulationPyramid {
// This code is based off the publication
// B. W. Goldman and W. F. Punch, "Parameter-less Population Pyramid," GECCO, pp. 785–792, 2014
// and the original source code in C++11 available from: https://github.com/brianwgoldman/Parameter-less_Population_Pyramid
public class LinkageTree {
private readonly int[][][] occurances;
private readonly List[] clusters;
private List clusterOrdering;
private readonly int length;
private readonly IRandom rand;
private bool rebuildRequired = false;
public LinkageTree(int length, IRandom rand) {
this.length = length;
this.rand = rand;
occurances = new int[length][][];
// Create a lower triangular matrix without the diagonal
for (int i = 1; i < length; i++) {
occurances[i] = new int[i][];
for (int j = 0; j < i; j++) {
occurances[i][j] = new int[4];
}
}
clusters = new List[2 * length - 1];
for (int i = 0; i < clusters.Length; i++) {
clusters[i] = new List();
}
clusterOrdering = new List();
// first "length" clusters just contain a single gene
for (int i = 0; i < length; i++) {
clusters[i].Add(i);
}
}
public void Add(BinaryVector solution) {
if (solution.Length != length) throw new ArgumentException("The individual has not the correct length.");
for (int i = 1; i < solution.Length; i++) {
for (int j = 0; j < i; j++) {
// Updates the entry of the 4 long array based on the two bits
var pattern = (Convert.ToByte(solution[j]) << 1) + Convert.ToByte(solution[i]);
occurances[i][j][pattern]++;
}
}
rebuildRequired = true;
}
// While "total" always has an integer value, it is a double to reduce
// how often type casts are needed to prevent integer divison
// In the GECCO paper, calculates Equation 2
private static double NegativeEntropy(int[] counts, double total) {
double sum = 0;
for (int i = 0; i < counts.Length; i++) {
if (counts[i] != 0) {
sum += ((counts[i] / total) * Math.Log(counts[i] / total));
}
}
return sum;
}
// Uses the frequency table to calcuate the entropy distance between two indices.
// In the GECCO paper, calculates Equation 1
private int[] bits = new int[4];
private double EntropyDistance(int i, int j) {
// This ensures you are using the lower triangular part of "occurances"
if (i < j) {
int temp = i;
i = j;
j = temp;
}
var entry = occurances[i][j];
// extracts the occurrences of the individual bits
bits[0] = entry[0] + entry[2]; // i zero
bits[1] = entry[1] + entry[3]; // i one
bits[2] = entry[0] + entry[1]; // j zero
bits[3] = entry[2] + entry[3]; // j one
double total = bits[0] + bits[1];
// entropy of the two bits on their own
double separate = NegativeEntropy(bits, total);
// entropy of the two bits as a single unit
double together = NegativeEntropy(entry, total);
// If together there is 0 entropy, the distance is zero
if (together.IsAlmost(0)) {
return 0.0;
}
return 2 - (separate / together);
}
// Performs O(N^2) clustering based on the method described in:
// "Optimal implementations of UPGMA and other common clustering algorithms"
// by I. Gronau and S. Moran
// In the GECCO paper, Figure 2 is a simplified version of this algorithm.
private double[][] distances;
private void Rebuild() {
if (distances == null) {
distances = new double[clusters.Length * 2 - 1][];
for (int i = 0; i < distances.Length; i++)
distances[i] = new double[clusters.Length * 2 - 1];
}
// Keep track of which clusters have not been merged
var topLevel = new List(length);
for (int i = 0; i < length; i++)
topLevel.Add(i);
bool[] useful = new bool[clusters.Length];
for (int i = 0; i < useful.Length; i++)
useful[i] = true;
// Store the distances between all clusters
for (int i = 1; i < length; i++) {
for (int j = 0; j < i; j++) {
distances[i][j] = EntropyDistance(clusters[i][0], clusters[j][0]);
// make it symmetric
distances[j][i] = distances[i][j];
}
}
// Each iteration we add some amount to the path, and remove the last
// two elements. This keeps track of how much of usable is in the path.
int end_of_path = 0;
// build all clusters of size greater than 1
for (int index = length; index < clusters.Length; index++) {
// Shuffle everything not yet in the path
topLevel.ShuffleInPlace(rand, end_of_path, topLevel.Count - 1);
// if nothing in the path, just add a random usable node
if (end_of_path == 0) {
end_of_path = 1;
}
while (end_of_path < topLevel.Count) {
// last node in the path
int final = topLevel[end_of_path - 1];
// best_index stores the location of the best thing in the top level
int best_index = end_of_path;
double min_dist = distances[final][topLevel[best_index]];
// check all options which might be closer to "final" than "topLevel[best_index]"
for (int option = end_of_path + 1; option < topLevel.Count; option++) {
if (distances[final][topLevel[option]] < min_dist) {
min_dist = distances[final][topLevel[option]];
best_index = option;
}
}
// If the current last two in the path are minimally distant
if (end_of_path > 1 && min_dist >= distances[final][topLevel[end_of_path - 2]]) {
break;
}
// move the best to the end of the path
topLevel.Swap(end_of_path, best_index);
end_of_path++;
}
// Last two elements in the path are the clusters to join
int first = topLevel[end_of_path - 2];
int second = topLevel[end_of_path - 1];
// Only keep a cluster if the distance between the joining clusters is > zero
bool keep = !distances[first][second].IsAlmost(0.0);
useful[first] = keep;
useful[second] = keep;
// create the new cluster
clusters[index] = clusters[first].Concat(clusters[second]).ToList();
// Calculate distances from all clusters to the newly created cluster
int i = 0;
int end = topLevel.Count - 1;
while (i <= end) {
int x = topLevel[i];
// Moves 'first' and 'second' to after "end" in topLevel
if (x == first || x == second) {
topLevel.Swap(i, end);
end--;
continue;
}
// Use the previous distances to calculate the joined distance
double first_distance = distances[first][x];
first_distance *= clusters[first].Count;
double second_distance = distances[second][x];
second_distance *= clusters[second].Count;
distances[x][index] = ((first_distance + second_distance)
/ (clusters[first].Count + clusters[second].Count));
// make it symmetric
distances[index][x] = distances[x][index];
i++;
}
// Remove first and second from the path
end_of_path -= 2;
topLevel.RemoveAt(topLevel.Count - 1);
topLevel[topLevel.Count - 1] = index;
}
// Extract the useful clusters
clusterOrdering.Clear();
// Add all useful clusters. The last one is never useful.
for (int i = 0; i < useful.Length - 1; i++) {
if (useful[i]) clusterOrdering.Add(i);
}
// Shuffle before sort to ensure ties are broken randomly
clusterOrdering.ShuffleInPlace(rand);
clusterOrdering = clusterOrdering.OrderBy(i => clusters[i].Count).ToList();
}
public IEnumerable> Clusters {
get {
// Just in time rebuilding
if (rebuildRequired) Rebuild();
foreach (var index in clusterOrdering) {
// Send out the clusters in the desired order
yield return clusters[index];
}
}
}
}
}