#region License Information
/* HeuristicLab
* Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Algorithms.DataAnalysis {
public static class KMeansClusteringUtil {
public static IEnumerable FindClosestCenters(IEnumerable centers, Dataset dataset, IEnumerable allowedInputVariables, IEnumerable rows) {
int nRows = rows.Count();
int nCols = allowedInputVariables.Count();
int[] closestCenter = new int[nRows];
double[] bestCenterDistance = Enumerable.Repeat(double.MaxValue, nRows).ToArray();
int centerIndex = 1;
foreach (double[] center in centers) {
if (nCols != center.Length) throw new ArgumentException();
int rowIndex = 0;
foreach (var row in rows) {
// calc euclidian distance of point to center
double centerDistance = 0;
int col = 0;
foreach (var inputVariable in allowedInputVariables) {
double d = center[col++] - dataset.GetDoubleValue(inputVariable, row);
d = d * d; // square;
centerDistance += d;
if (centerDistance > bestCenterDistance[rowIndex]) break;
}
if (centerDistance < bestCenterDistance[rowIndex]) {
bestCenterDistance[rowIndex] = centerDistance;
closestCenter[rowIndex] = centerIndex;
}
rowIndex++;
}
centerIndex++;
}
return closestCenter;
}
public static double CalculateIntraClusterSumOfSquares(KMeansClusteringModel model, Dataset dataset, IEnumerable rows) {
List clusterValues = model.GetClusterValues(dataset, rows).ToList();
List allowedInputVariables = model.AllowedInputVariables.ToList();
int nCols = allowedInputVariables.Count;
Dictionary> clusterPoints = new Dictionary>();
Dictionary clusterMeans = new Dictionary();
foreach (var clusterValue in clusterValues.Distinct()) {
clusterPoints.Add(clusterValue, new List());
}
// collect points of clusters
int clusterValueIndex = 0;
foreach (var row in rows) {
double[] p = new double[allowedInputVariables.Count];
for (int i = 0; i < nCols; i++) {
p[i] = dataset.GetDoubleValue(allowedInputVariables[i], row);
}
clusterPoints[clusterValues[clusterValueIndex++]].Add(p);
}
// calculate cluster means
foreach (var pair in clusterPoints) {
double[] mean = new double[nCols];
foreach (var p in pair.Value) {
for (int i = 0; i < nCols; i++) {
mean[i] += p[i];
}
}
for (int i = 0; i < nCols; i++) {
mean[i] /= pair.Value.Count;
}
clusterMeans[pair.Key] = mean;
}
// calculate distances
double allCenterDistances = 0;
foreach (var pair in clusterMeans) {
double[] mean = pair.Value;
double centerDistances = 0;
foreach (var clusterPoint in clusterPoints[pair.Key]) {
double centerDistance = 0;
for (int i = 0; i < nCols; i++) {
double d = mean[i] - clusterPoint[i];
d = d * d;
centerDistance += d;
}
centerDistances += centerDistance;
}
allCenterDistances += centerDistances;
}
return allCenterDistances;
}
}
}