1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
31 | /// <summary>
|
---|
32 | /// Represents a random forest model for regression and classification
|
---|
33 | /// </summary>
|
---|
34 | [StorableClass]
|
---|
35 | [Item("RandomForestModel", "Represents a random forest for regression and classification.")]
|
---|
36 | public sealed class RandomForestModel : NamedItem, IRandomForestModel {
|
---|
37 |
|
---|
38 | private alglib.decisionforest randomForest;
|
---|
39 | public alglib.decisionforest RandomForest {
|
---|
40 | get { return randomForest; }
|
---|
41 | set {
|
---|
42 | if (value != randomForest) {
|
---|
43 | if (value == null) throw new ArgumentNullException();
|
---|
44 | randomForest = value;
|
---|
45 | OnChanged(EventArgs.Empty);
|
---|
46 | }
|
---|
47 | }
|
---|
48 | }
|
---|
49 |
|
---|
50 | [Storable]
|
---|
51 | private string targetVariable;
|
---|
52 | [Storable]
|
---|
53 | private string[] allowedInputVariables;
|
---|
54 | [Storable]
|
---|
55 | private double[] classValues;
|
---|
56 | [StorableConstructor]
|
---|
57 | private RandomForestModel(bool deserializing)
|
---|
58 | : base(deserializing) {
|
---|
59 | if (deserializing)
|
---|
60 | randomForest = new alglib.decisionforest();
|
---|
61 | }
|
---|
62 | private RandomForestModel(RandomForestModel original, Cloner cloner)
|
---|
63 | : base(original, cloner) {
|
---|
64 | randomForest = new alglib.decisionforest();
|
---|
65 | randomForest.innerobj.bufsize = original.randomForest.innerobj.bufsize;
|
---|
66 | randomForest.innerobj.nclasses = original.randomForest.innerobj.nclasses;
|
---|
67 | randomForest.innerobj.ntrees = original.randomForest.innerobj.ntrees;
|
---|
68 | randomForest.innerobj.nvars = original.randomForest.innerobj.nvars;
|
---|
69 | randomForest.innerobj.trees = (double[])original.randomForest.innerobj.trees.Clone();
|
---|
70 | targetVariable = original.targetVariable;
|
---|
71 | allowedInputVariables = (string[])original.allowedInputVariables.Clone();
|
---|
72 | if (original.classValues != null)
|
---|
73 | this.classValues = (double[])original.classValues.Clone();
|
---|
74 | }
|
---|
75 | public RandomForestModel(alglib.decisionforest randomForest, string targetVariable, IEnumerable<string> allowedInputVariables, double[] classValues = null)
|
---|
76 | : base() {
|
---|
77 | this.name = ItemName;
|
---|
78 | this.description = ItemDescription;
|
---|
79 | this.randomForest = randomForest;
|
---|
80 | this.targetVariable = targetVariable;
|
---|
81 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
82 | if (classValues != null)
|
---|
83 | this.classValues = (double[])classValues.Clone();
|
---|
84 | }
|
---|
85 |
|
---|
86 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
87 | return new RandomForestModel(this, cloner);
|
---|
88 | }
|
---|
89 |
|
---|
90 | public IEnumerable<double> GetEstimatedValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
91 | double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
|
---|
92 |
|
---|
93 | int n = inputData.GetLength(0);
|
---|
94 | int columns = inputData.GetLength(1);
|
---|
95 | double[] x = new double[columns];
|
---|
96 | double[] y = new double[1];
|
---|
97 |
|
---|
98 | for (int row = 0; row < n; row++) {
|
---|
99 | for (int column = 0; column < columns; column++) {
|
---|
100 | x[column] = inputData[row, column];
|
---|
101 | }
|
---|
102 | alglib.dfprocess(randomForest, x, ref y);
|
---|
103 | yield return y[0];
|
---|
104 | }
|
---|
105 | }
|
---|
106 |
|
---|
107 | public IEnumerable<double> GetEstimatedClassValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
108 | double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
|
---|
109 |
|
---|
110 | int n = inputData.GetLength(0);
|
---|
111 | int columns = inputData.GetLength(1);
|
---|
112 | double[] x = new double[columns];
|
---|
113 | double[] y = new double[randomForest.innerobj.nclasses];
|
---|
114 |
|
---|
115 | for (int row = 0; row < n; row++) {
|
---|
116 | for (int column = 0; column < columns; column++) {
|
---|
117 | x[column] = inputData[row, column];
|
---|
118 | }
|
---|
119 | alglib.dfprocess(randomForest, x, ref y);
|
---|
120 | // find class for with the largest probability value
|
---|
121 | int maxProbClassIndex = 0;
|
---|
122 | double maxProb = y[0];
|
---|
123 | for (int i = 1; i < y.Length; i++) {
|
---|
124 | if (maxProb < y[i]) {
|
---|
125 | maxProb = y[i];
|
---|
126 | maxProbClassIndex = i;
|
---|
127 | }
|
---|
128 | }
|
---|
129 | yield return classValues[maxProbClassIndex];
|
---|
130 | }
|
---|
131 | }
|
---|
132 |
|
---|
133 | public IRandomForestRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
134 | return new RandomForestRegressionSolution(problemData, this);
|
---|
135 | }
|
---|
136 | IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
137 | return CreateRegressionSolution(problemData);
|
---|
138 | }
|
---|
139 |
|
---|
140 | #region events
|
---|
141 | public event EventHandler Changed;
|
---|
142 | private void OnChanged(EventArgs e) {
|
---|
143 | var handlers = Changed;
|
---|
144 | if (handlers != null)
|
---|
145 | handlers(this, e);
|
---|
146 | }
|
---|
147 | #endregion
|
---|
148 |
|
---|
149 | #region persistence
|
---|
150 | [Storable]
|
---|
151 | private int RandomForestBufSize {
|
---|
152 | get {
|
---|
153 | return randomForest.innerobj.bufsize;
|
---|
154 | }
|
---|
155 | set {
|
---|
156 | randomForest.innerobj.bufsize = value;
|
---|
157 | }
|
---|
158 | }
|
---|
159 | [Storable]
|
---|
160 | private int RandomForestNClasses {
|
---|
161 | get {
|
---|
162 | return randomForest.innerobj.nclasses;
|
---|
163 | }
|
---|
164 | set {
|
---|
165 | randomForest.innerobj.nclasses = value;
|
---|
166 | }
|
---|
167 | }
|
---|
168 | [Storable]
|
---|
169 | private int RandomForestNTrees {
|
---|
170 | get {
|
---|
171 | return randomForest.innerobj.ntrees;
|
---|
172 | }
|
---|
173 | set {
|
---|
174 | randomForest.innerobj.ntrees = value;
|
---|
175 | }
|
---|
176 | }
|
---|
177 | [Storable]
|
---|
178 | private int RandomForestNVars {
|
---|
179 | get {
|
---|
180 | return randomForest.innerobj.nvars;
|
---|
181 | }
|
---|
182 | set {
|
---|
183 | randomForest.innerobj.nvars = value;
|
---|
184 | }
|
---|
185 | }
|
---|
186 | [Storable]
|
---|
187 | private double[] RandomForestTrees {
|
---|
188 | get {
|
---|
189 | return randomForest.innerobj.trees;
|
---|
190 | }
|
---|
191 | set {
|
---|
192 | randomForest.innerobj.trees = value;
|
---|
193 | }
|
---|
194 | }
|
---|
195 | #endregion
|
---|
196 | }
|
---|
197 | }
|
---|