Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkEnsembleModel.cs @ 6580

Last change on this file since 6580 was 6580, checked in by gkronber, 13 years ago

#1474: added implementations for regression and classification with neural network ensembles (wrappers for alglib).

File size: 10.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.IO;
25using System.Linq;
26using System.Text;
27using HeuristicLab.Common;
28using HeuristicLab.Core;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30using HeuristicLab.Problems.DataAnalysis;
31using SVM;
32
33namespace HeuristicLab.Algorithms.DataAnalysis {
34  /// <summary>
35  /// Represents a neural network ensembel model for regression and classification
36  /// </summary>
37  [StorableClass]
38  [Item("NeuralNetworkEnsembleModel", "Represents a neural network ensemble for regression and classification.")]
39  public sealed class NeuralNetworkEnsembleModel : NamedItem, INeuralNetworkEnsembleModel {
40
41    private alglib.mlpensemble mlpEnsemble;
42    public alglib.mlpensemble MultiLayerPerceptronEnsemble {
43      get { return mlpEnsemble; }
44      set {
45        if (value != mlpEnsemble) {
46          if (value == null) throw new ArgumentNullException();
47          mlpEnsemble = value;
48          OnChanged(EventArgs.Empty);
49        }
50      }
51    }
52
53    [Storable]
54    private string targetVariable;
55    [Storable]
56    private string[] allowedInputVariables;
57    [Storable]
58    private double[] classValues;
59    [StorableConstructor]
60    private NeuralNetworkEnsembleModel(bool deserializing)
61      : base(deserializing) {
62      if (deserializing)
63        mlpEnsemble = new alglib.mlpensemble();
64    }
65    private NeuralNetworkEnsembleModel(NeuralNetworkEnsembleModel original, Cloner cloner)
66      : base(original, cloner) {
67      mlpEnsemble = new alglib.mlpensemble();
68      mlpEnsemble.innerobj.columnmeans = (double[])original.mlpEnsemble.innerobj.columnmeans.Clone();
69      mlpEnsemble.innerobj.columnsigmas = (double[])original.mlpEnsemble.innerobj.columnsigmas.Clone();
70      mlpEnsemble.innerobj.dfdnet = (double[])original.mlpEnsemble.innerobj.dfdnet.Clone();
71      mlpEnsemble.innerobj.ensemblesize = original.mlpEnsemble.innerobj.ensemblesize;
72      mlpEnsemble.innerobj.issoftmax = original.mlpEnsemble.innerobj.issoftmax;
73      mlpEnsemble.innerobj.neurons = (double[])original.mlpEnsemble.innerobj.neurons.Clone();
74      mlpEnsemble.innerobj.nin = original.mlpEnsemble.innerobj.nin;
75      mlpEnsemble.innerobj.nout = original.mlpEnsemble.innerobj.nout;
76      mlpEnsemble.innerobj.postprocessing = original.mlpEnsemble.innerobj.postprocessing;
77      mlpEnsemble.innerobj.serializedlen = original.mlpEnsemble.innerobj.serializedlen;
78      mlpEnsemble.innerobj.serializedmlp = (double[])original.mlpEnsemble.innerobj.serializedmlp.Clone();
79      mlpEnsemble.innerobj.structinfo = (int[])original.mlpEnsemble.innerobj.structinfo.Clone();
80      mlpEnsemble.innerobj.tmpmeans = (double[])original.mlpEnsemble.innerobj.tmpmeans.Clone();
81      mlpEnsemble.innerobj.tmpsigmas = (double[])original.mlpEnsemble.innerobj.tmpsigmas.Clone();
82      mlpEnsemble.innerobj.tmpweights = (double[])original.mlpEnsemble.innerobj.tmpweights.Clone();
83      mlpEnsemble.innerobj.wcount = original.mlpEnsemble.innerobj.wcount;
84      mlpEnsemble.innerobj.weights = (double[])original.mlpEnsemble.innerobj.weights.Clone();
85      mlpEnsemble.innerobj.y = (double[])original.mlpEnsemble.innerobj.y.Clone();
86      targetVariable = original.targetVariable;
87      allowedInputVariables = (string[])original.allowedInputVariables.Clone();
88      if (original.classValues != null)
89        this.classValues = (double[])original.classValues.Clone();
90    }
91    public NeuralNetworkEnsembleModel(alglib.mlpensemble mlpEnsemble, string targetVariable, IEnumerable<string> allowedInputVariables, double[] classValues = null)
92      : base() {
93      this.name = ItemName;
94      this.description = ItemDescription;
95      this.mlpEnsemble = mlpEnsemble;
96      this.targetVariable = targetVariable;
97      this.allowedInputVariables = allowedInputVariables.ToArray();
98      if (classValues != null)
99        this.classValues = (double[])classValues.Clone();
100    }
101
102    public override IDeepCloneable Clone(Cloner cloner) {
103      return new NeuralNetworkEnsembleModel(this, cloner);
104    }
105
106    public IEnumerable<double> GetEstimatedValues(Dataset dataset, IEnumerable<int> rows) {
107      double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
108
109      int n = inputData.GetLength(0);
110      int columns = inputData.GetLength(1);
111      double[] x = new double[columns];
112      double[] y = new double[1];
113
114      for (int row = 0; row < n; row++) {
115        for (int column = 0; column < columns; column++) {
116          x[column] = inputData[row, column];
117        }
118        alglib.mlpeprocess(mlpEnsemble, x, ref y);
119        yield return y[0];
120      }
121    }
122
123    public IEnumerable<double> GetEstimatedClassValues(Dataset dataset, IEnumerable<int> rows) {
124      double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
125
126      int n = inputData.GetLength(0);
127      int columns = inputData.GetLength(1);
128      double[] x = new double[columns];
129      double[] y = new double[classValues.Length];
130
131      for (int row = 0; row < n; row++) {
132        for (int column = 0; column < columns; column++) {
133          x[column] = inputData[row, column];
134        }
135        alglib.mlpeprocess(mlpEnsemble, x, ref y);
136        // find class for with the largest probability value
137        int maxProbClassIndex = 0;
138        double maxProb = y[0];
139        for (int i = 1; i < y.Length; i++) {
140          if (maxProb < y[i]) {
141            maxProb = y[i];
142            maxProbClassIndex = i;
143          }
144        }
145        yield return classValues[maxProbClassIndex];
146      }
147    }
148
149    #region events
150    public event EventHandler Changed;
151    private void OnChanged(EventArgs e) {
152      var handlers = Changed;
153      if (handlers != null)
154        handlers(this, e);
155    }
156    #endregion
157
158    #region persistence
159    [Storable]
160    private double[] MultiLayerPerceptronEnsembleColumnMeans {
161      get {
162        return mlpEnsemble.innerobj.columnmeans;
163      }
164      set {
165        mlpEnsemble.innerobj.columnmeans = value;
166      }
167    }
168    [Storable]
169    private double[] MultiLayerPerceptronEnsembleColumnSigmas {
170      get {
171        return mlpEnsemble.innerobj.columnsigmas;
172      }
173      set {
174        mlpEnsemble.innerobj.columnsigmas = value;
175      }
176    }
177    [Storable]
178    private double[] MultiLayerPerceptronEnsembleDfdnet {
179      get {
180        return mlpEnsemble.innerobj.dfdnet;
181      }
182      set {
183        mlpEnsemble.innerobj.dfdnet = value;
184      }
185    }
186    [Storable]
187    private int MultiLayerPerceptronEnsembleSize {
188      get {
189        return mlpEnsemble.innerobj.ensemblesize;
190      }
191      set {
192        mlpEnsemble.innerobj.ensemblesize = value;
193      }
194    }
195    [Storable]
196    private bool MultiLayerPerceptronEnsembleIsSoftMax {
197      get {
198        return mlpEnsemble.innerobj.issoftmax;
199      }
200      set {
201        mlpEnsemble.innerobj.issoftmax = value;
202      }
203    }
204    [Storable]
205    private double[] MultiLayerPerceptronEnsembleNeurons {
206      get {
207        return mlpEnsemble.innerobj.neurons;
208      }
209      set {
210        mlpEnsemble.innerobj.neurons = value;
211      }
212    }
213    [Storable]
214    private int MultiLayerPerceptronEnsembleNin {
215      get {
216        return mlpEnsemble.innerobj.nin;
217      }
218      set {
219        mlpEnsemble.innerobj.nin = value;
220      }
221    }
222    [Storable]
223    private int MultiLayerPerceptronEnsembleNout {
224      get {
225        return mlpEnsemble.innerobj.nout;
226      }
227      set {
228        mlpEnsemble.innerobj.nout = value;
229      }
230    }
231    [Storable]
232    private bool MultiLayerPerceptronEnsemblePostprocessing {
233      get {
234        return mlpEnsemble.innerobj.postprocessing;
235      }
236      set {
237        mlpEnsemble.innerobj.postprocessing = value;
238      }
239    }
240    [Storable]
241    private int MultiLayerPerceptronEnsembleSerializedLen {
242      get {
243        return mlpEnsemble.innerobj.serializedlen;
244      }
245      set {
246        mlpEnsemble.innerobj.serializedlen = value;
247      }
248    }
249    [Storable]
250    private double[] MultiLayerPerceptronEnsembleSerializedMlp {
251      get {
252        return mlpEnsemble.innerobj.serializedmlp;
253      }
254      set {
255        mlpEnsemble.innerobj.serializedmlp = value;
256      }
257    }
258    [Storable]
259    private int[] MultiLayerPerceptronStuctinfo {
260      get {
261        return mlpEnsemble.innerobj.structinfo;
262      }
263      set {
264        mlpEnsemble.innerobj.structinfo = value;
265      }
266    }
267    [Storable]
268    private double[] MultiLayerPerceptronEnsembleTmpMeans {
269      get {
270        return mlpEnsemble.innerobj.tmpmeans;
271      }
272      set {
273        mlpEnsemble.innerobj.tmpmeans = value;
274      }
275    }
276    [Storable]
277    private double[] MultiLayerPerceptronEnsembleTmpSigmas {
278      get {
279        return mlpEnsemble.innerobj.tmpsigmas;
280      }
281      set {
282        mlpEnsemble.innerobj.tmpsigmas = value;
283      }
284    }
285    [Storable]
286    private double[] MultiLayerPerceptronEnsembleTmpWeights {
287      get {
288        return mlpEnsemble.innerobj.tmpweights;
289      }
290      set {
291        mlpEnsemble.innerobj.tmpweights = value;
292      }
293    }
294    [Storable]
295    private int MultiLayerPerceptronEnsembleWCount {
296      get {
297        return mlpEnsemble.innerobj.wcount;
298      }
299      set {
300        mlpEnsemble.innerobj.wcount = value;
301      }
302    }
303
304    [Storable]
305    private double[] MultiLayerPerceptronWeights {
306      get {
307        return mlpEnsemble.innerobj.weights;
308      }
309      set {
310        mlpEnsemble.innerobj.weights = value;
311      }
312    }
313    [Storable]
314    private double[] MultiLayerPerceptronY {
315      get {
316        return mlpEnsemble.innerobj.y;
317      }
318      set {
319        mlpEnsemble.innerobj.y = value;
320      }
321    }
322    #endregion
323  }
324}
Note: See TracBrowser for help on using the repository browser.