#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Random; namespace HeuristicLab.Algorithms.DataAnalysis { [Item("Random", "Initializes the matrix randomly.")] [StorableClass] public class RandomInitializer : ParameterizedNamedItem, INCAInitializer { private IValueParameter RandomParameter { get { return (IValueParameter)Parameters["Seed"]; } } private IValueParameter SetSeedRandomlyParameter { get { return (IValueParameter)Parameters["SetSeedRandomly"]; } } public int Seed { get { return RandomParameter.Value.Value; } set { RandomParameter.Value.Value = value; } } public bool SetSeedRandomly { get { return SetSeedRandomlyParameter.Value.Value; } set { SetSeedRandomlyParameter.Value.Value = value; } } [StorableConstructor] protected RandomInitializer(bool deserializing) : base(deserializing) { } protected RandomInitializer(RandomInitializer original, Cloner cloner) : base(original, cloner) { } public RandomInitializer() : base() { Parameters.Add(new ValueParameter("Seed", "The seed for the random number generator.", new IntValue(0))); Parameters.Add(new ValueParameter("SetSeedRandomly", "Whether the seed should be randomized for each call.", new BoolValue(true))); } public override IDeepCloneable Clone(Cloner cloner) { return new RandomInitializer(this, cloner); } public double[] Initialize(IClassificationProblemData data, int dimensions) { var instances = data.TrainingIndices.Count(); var attributes = data.AllowedInputVariables.Count(); var random = new MersenneTwister(); if (SetSeedRandomly) Seed = random.Next(); random.Reset(Seed); var range = data.AllowedInputVariables.Select(x => data.Dataset.GetDoubleValues(x).Max() - data.Dataset.GetDoubleValues(x).Min()).ToArray(); var matrix = new double[attributes * dimensions]; for (int i = 0; i < matrix.Length; i++) matrix[i] = random.NextDouble() / range[i / dimensions]; return matrix; } } }