#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Algorithms.DataAnalysis {
[Item("LDA", "Initializes the matrix by performing a linear discriminant analysis.")]
[StorableClass]
public class LDAInitializer : Item, INCAInitializer {
[StorableConstructor]
protected LDAInitializer(bool deserializing) : base(deserializing) { }
protected LDAInitializer(LDAInitializer original, Cloner cloner) : base(original, cloner) { }
public LDAInitializer() : base() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new LDAInitializer(this, cloner);
}
public double[] Initialize(IClassificationProblemData data, int dimensions) {
var instances = data.TrainingIndices.Count();
var attributes = data.AllowedInputVariables.Count();
var ldaDs = new double[instances, attributes + 1];
int row, col = 0;
foreach (var variable in data.AllowedInputVariables) {
row = 0;
foreach (var value in data.Dataset.GetDoubleValues(variable, data.TrainingIndices)) {
ldaDs[row, col] = value;
row++;
}
col++;
}
row = 0;
var uniqueClasses = new Dictionary();
foreach (var label in data.Dataset.GetDoubleValues(data.TargetVariable, data.TrainingIndices)) {
if (!uniqueClasses.ContainsKey(label))
uniqueClasses[label] = uniqueClasses.Count;
ldaDs[row++, attributes] = label;
}
for (row = 0; row < instances; row++)
ldaDs[row, attributes] = uniqueClasses[ldaDs[row, attributes]];
int info;
double[,] matrix;
alglib.fisherldan(ldaDs, instances, attributes, uniqueClasses.Count, out info, out matrix);
var result = new double[attributes * dimensions];
for (int i = 0; i < attributes; i++)
for (int j = 0; j < dimensions; j++)
result[i * dimensions + j] = matrix[i, j];
return result;
}
}
}