#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Diagnostics.Contracts; using System.Linq; namespace HeuristicLab.Algorithms.DataAnalysis.MctsSymbolicRegression { // This class restricts the set of allowed transitions of the automaton to prevent exploration of duplicate expressions. // It would be possible to implement this class in such a way that the search never visits a duplicate expression. However, // it seems very intricate to detect this robustly and in all cases while generating an expression because // some for of lookahead is necessary. // Instead the constraint handler only catches the obvious duplicates directly, but does not guarantee that the search always produces a valid expression. // The ratio of the number of unsuccessful searches, that need backtracking should be tracked in the MCTS alg (MctsSymbolicRegressionStatic) // All changes to this class should be tested through unit tests. It is important that the ConstraintHandler is not too restrictive. // the constraints are derived from a canonical form for expressions. // overall we can enforce a limited number of variable references // // an expression is a sum of terms t_1 ... t_n where terms are ordered according to a relation t_i (<=)_term t_j for each pair t_i, t_j and i <= j // a term is a product of factors where factors are ordered according to relation f_i (<=)_factor f_j for each pair f_i,f_j and i <= j // we want to enforce lower-order terms before higher-order terms in expressions (based on number of variable references) // factors can have different types (variable, exp, log, inverse) // (<=)_term [IsSmallerOrEqualTerm(t_i, t_j)] // 1. NumberOfVarRefs(t_i) < NumberOfVarRefs(t_j) --> true enforce terms with non-decreasing number of var refs // 2. NumberOfVarRefs(t_i) > NumberOfVarRefs(t_j) --> false // 3. NumFactors(t_i) > NumFactors(t_j) --> true enforce terms with non-increasing number of factors // 4. NumFactors(t_i) < NumFactors(t_j) --> false // 5. for all k factors: Factor(k, t_i) (<=)_factor Factor(k, t_j) --> true // factors must be non-decreasing // 6. all factors are (=)_factor --> true // 7. else false // (<=)_factor [IsSmallerOrEqualFactor(f_i, f_j)] // 1. FactorType(t_i) < FactorType(t_j) --> true enforce terms with non-decreasing factor type (var < exp < log < inv) // 2. FactorType(t_i) > FactorType(t_j) --> false // 3. Compare the two factors specifically // - variables: varIdx_i <= varIdx_j (only one var reference) // - exp: number of variable references and then varIdx_i <= varIdx_j for each position // - log: number of variable references and ... // - inv: number of variable references and ... // // for log and inverse factors we allow all polynomials as argument // a polynomial is a sum of terms t_1 ... t_n where terms are ordered according to a relation t_i (<=)_poly t_j for each pair t_i, t_j and i <= j // (<=)_poly [IsSmallerOrEqualPoly(t_i, t_j)] // 1. NumberOfVarRefs(t_i) < NumberOfVarRefs(t_j) --> true // enforce non-decreasing number of var refs // 2. NumberOfVarRefs(t_i) > NumberOfVarRefs(t_j) --> false // enforce non-decreasing number of var refs // 3. for all k variables: VarIdx(k,t_i) > VarIdx(k, t_j) --> false // enforce non-decreasing variable idx // we store the following to make comparsions: // - prevTerm (complete & containing all factors) // - curTerm (incomplete & containing all completed factors) // - curFactor (incomplete) internal class ConstraintHandler { private int nVars; private readonly int maxVariables; private bool invalidExpression; public bool IsInvalidExpression { get { return invalidExpression; } } private TermInformation prevTerm; private TermInformation curTerm; private FactorInformation curFactor; private class TermInformation { public int numVarReferences { get { return factors.Sum(f => f.numVarReferences); } } public List factors = new List(); } private class FactorInformation { public int numVarReferences = 0; public int factorType; // use the state number to represent types // for variable factors public int variableState = -1; // for exp factors public List expVariableStates = new List(); // for log and inv factors public List> polyVariableStates = new List>(); } public ConstraintHandler(int maxVars) { this.maxVariables = maxVars; } // the order relations for terms and factors private static int CompareTerms(TermInformation a, TermInformation b) { if (a.numVarReferences < b.numVarReferences) return -1; if (a.numVarReferences > b.numVarReferences) return 1; if (a.factors.Count > b.factors.Count) return -1; // terms with more factors should be ordered first if (a.factors.Count < b.factors.Count) return +1; var aFactors = a.factors.GetEnumerator(); var bFactors = b.factors.GetEnumerator(); while (aFactors.MoveNext() & bFactors.MoveNext()) { var c = CompareFactors(aFactors.Current, bFactors.Current); if (c < 0) return -1; if (c > 0) return 1; } // all factors are the same => terms are the same return 0; } private static int CompareFactors(FactorInformation a, FactorInformation b) { if (a.factorType < b.factorType) return -1; if (a.factorType > b.factorType) return +1; // same factor types if (a.factorType == Automaton.StateVariableFactorStart) { return a.variableState.CompareTo(b.variableState); } else if (a.factorType == Automaton.StateExpFactorStart) { return CompareStateLists(a.expVariableStates, b.expVariableStates); } else { if (a.numVarReferences < b.numVarReferences) return -1; if (a.numVarReferences > b.numVarReferences) return +1; if (a.polyVariableStates.Count > b.polyVariableStates.Count) return -1; // more terms in the poly should be ordered first if (a.polyVariableStates.Count < b.polyVariableStates.Count) return +1; // log and inv var aTerms = a.polyVariableStates.GetEnumerator(); var bTerms = b.polyVariableStates.GetEnumerator(); while (aTerms.MoveNext() & bTerms.MoveNext()) { var c = CompareStateLists(aTerms.Current, bTerms.Current); if (c != 0) return c; } return 0; // all terms in the polynomial are the same } } private static int CompareStateLists(List a, List b) { if (a.Count < b.Count) return -1; if (a.Count > b.Count) return +1; for (int i = 0; i < a.Count; i++) { if (a[i] < b[i]) return -1; if (a[i] > b[i]) return +1; } return 0; // all states are the same } private bool IsNewTermAllowed() { // next term must have at least as many variable references as the previous term return prevTerm == null || nVars + prevTerm.numVarReferences <= maxVariables; } private bool IsNewFactorAllowed() { // next factor must have a larger or equal type compared to the previous factor. // if the types are the same it must have at least as many variable references. // so if the prevFactor is any other than invFactor (last possible type) then we only need to be able to add one variable // otherwise we need to be able to add at least as many variables as the previous factor return !curTerm.factors.Any() || (nVars + curTerm.factors.Last().numVarReferences <= maxVariables); } private bool IsAllowedAsNextFactorType(int followState) { // IsNewTermAllowed already ensures that we can add a term with enough variable references // enforce constraints within terms (compare to prev factor) if (curTerm.factors.Any()) { // enforce non-decreasing factor types if (curTerm.factors.Last().factorType > followState) return false; // when the factor type is the same, starting a new factor is only allowed if we can add at least the number of variables of the prev factor if (curTerm.factors.Last().factorType == followState && nVars + curTerm.factors.Last().numVarReferences > maxVariables) return false; } // enforce constraints on terms (compare to prev term) // meaning that we must ensure non-decreasing terms if (prevTerm != null) { // a factor type is only allowed if we can then produce a term that is larger or equal to the prev term // (1) if we the number of variable references still remaining is larger than the number of variable references in the prev term // then it is always possible to build a larger term // (2) otherwise we try to build the largest possible term starting from current factors in the term. // var numVarRefsRemaining = maxVariables - nVars; Contract.Assert(!curTerm.factors.Any() || curTerm.factors.Last().numVarReferences <= numVarRefsRemaining); if (prevTerm.numVarReferences < numVarRefsRemaining) return true; // variable factors must be handled differently because they can only contain one variable reference if (followState == Automaton.StateVariableFactorStart) { // append the variable factor and the maximum possible state from the previous factor to create a larger factor var varF = CreateLargestPossibleFactor(Automaton.StateVariableFactorStart, 1); var maxF = CreateLargestPossibleFactor(prevTerm.factors.Max(f => f.factorType), numVarRefsRemaining - 1); var origFactorCount = curTerm.factors.Count; // add this factor to the current term curTerm.factors.Add(varF); curTerm.factors.Add(maxF); var c = CompareTerms(prevTerm, curTerm); // restore term curTerm.factors.RemoveRange(origFactorCount, 2); // if the prev term is still larger then this followstate is not allowed if (c > 0) { return false; } } else { var newF = CreateLargestPossibleFactor(followState, numVarRefsRemaining); var origFactorCount = curTerm.factors.Count; // add this factor to the current term curTerm.factors.Add(newF); var c = CompareTerms(prevTerm, curTerm); // restore term curTerm.factors.RemoveAt(origFactorCount); // if the prev term is still larger then this followstate is not allowed if (c > 0) { return false; } } } return true; } // largest possible factor of the given kind private FactorInformation CreateLargestPossibleFactor(int factorType, int numVarRefs) { var newF = new FactorInformation(); newF.factorType = factorType; if (factorType == Automaton.StateVariableFactorStart) { newF.variableState = int.MaxValue; newF.numVarReferences = 1; } else if (factorType == Automaton.StateExpFactorStart) { for (int i = 0; i < numVarRefs; i++) newF.expVariableStates.Add(int.MaxValue); newF.numVarReferences = numVarRefs; } else if (factorType == Automaton.StateInvFactorStart || factorType == Automaton.StateLogFactorStart) { for (int i = 0; i < numVarRefs; i++) { newF.polyVariableStates.Add(new List()); newF.polyVariableStates[i].Add(int.MaxValue); } newF.numVarReferences = numVarRefs; } return newF; } private bool IsAllowedAsNextVariableFactor(int variableState) { Contract.Assert(variableState >= Automaton.FirstDynamicState); return !curTerm.factors.Any() || curTerm.factors.Last().variableState <= variableState; } private bool IsAllowedAsNextInExp(int variableState) { Contract.Assert(variableState >= Automaton.FirstDynamicState); if (curFactor.expVariableStates.Any() && curFactor.expVariableStates.Last() > variableState) return false; if (curTerm.factors.Any()) { // try and compare with prev factor curFactor.numVarReferences++; curFactor.expVariableStates.Add(variableState); var c = CompareFactors(curTerm.factors.Last(), curFactor); curFactor.numVarReferences--; curFactor.expVariableStates.RemoveAt(curFactor.expVariableStates.Count - 1); return c <= 0; } return true; } private bool IsNewTermAllowedInPoly() { return nVars + curFactor.polyVariableStates.Last().Count() <= maxVariables; } private bool IsAllowedAsNextInPoly(int variableState) { Contract.Assert(variableState >= Automaton.FirstDynamicState); return !curFactor.polyVariableStates.Any() || !curFactor.polyVariableStates.Last().Any() || curFactor.polyVariableStates.Last().Last() <= variableState; } private bool IsTermCompleteInPoly() { var nTerms = curFactor.polyVariableStates.Count; return nTerms == 1 || curFactor.polyVariableStates[nTerms - 2].Count <= curFactor.polyVariableStates[nTerms - 1].Count; } private bool IsCompleteExp() { return !curTerm.factors.Any() || CompareFactors(curTerm.factors.Last(), curFactor) <= 0; } public bool IsAllowedFollowState(int currentState, int followState) { // an invalid action was taken earlier on => nothing can be done anymore if (invalidExpression) return false; // states that have no alternative are always allowed // some ending states are only allowed if enough variables have been used in the term if ( currentState == Automaton.StateTermStart || // no alternative currentState == Automaton.StateExpFactorStart || currentState == Automaton.StateLogFactorStart || currentState == Automaton.StateInvFactorStart || followState == Automaton.StateVariableFactorEnd || // no alternative followState == Automaton.StateExpFEnd || // no alternative followState == Automaton.StateLogTFEnd || // no alternative followState == Automaton.StateInvTFEnd || // no alternative followState == Automaton.StateFactorEnd || // always allowed because no alternative followState == Automaton.StateExprEnd // we could also constrain the minimum number of terms here ) return true; // starting a new term is only allowed if we can add a term with at least the number of variables of the prev term if (followState == Automaton.StateTermStart && !IsNewTermAllowed()) return false; if (followState == Automaton.StateFactorStart && !IsNewFactorAllowed()) return false; if (currentState == Automaton.StateFactorStart && !IsAllowedAsNextFactorType(followState)) return false; if (followState == Automaton.StateTermEnd && prevTerm != null && CompareTerms(prevTerm, curTerm) > 0) return false; // all of these states add at least one variable if ( followState == Automaton.StateVariableFactorStart || followState == Automaton.StateExpFactorStart || followState == Automaton.StateExpFStart || followState == Automaton.StateLogFactorStart || followState == Automaton.StateLogTStart || followState == Automaton.StateLogTFStart || followState == Automaton.StateInvFactorStart || followState == Automaton.StateInvTStart || followState == Automaton.StateInvTFStart) { if (nVars + 1 > maxVariables) return false; } if (currentState == Automaton.StateVariableFactorStart && !IsAllowedAsNextVariableFactor(followState)) return false; else if (currentState == Automaton.StateExpFStart && !IsAllowedAsNextInExp(followState)) return false; else if (followState == Automaton.StateLogTStart && !IsNewTermAllowedInPoly()) return false; else if (currentState == Automaton.StateLogTFStart && !IsAllowedAsNextInPoly(followState)) return false; else if (followState == Automaton.StateInvTStart && !IsNewTermAllowedInPoly()) return false; else if (currentState == Automaton.StateInvTFStart && !IsAllowedAsNextInPoly(followState)) return false; // finishing an exponential factor is only allowed when the number of variable references is large enough else if (followState == Automaton.StateExpFactorEnd && !IsCompleteExp()) return false; // finishing a polynomial (in log or inv) is only allowed when the number of variable references is large enough else if (followState == Automaton.StateInvTEnd && !IsTermCompleteInPoly()) return false; else if (followState == Automaton.StateLogTEnd && !IsTermCompleteInPoly()) return false; else if (nVars > maxVariables) return false; else return true; } public void Reset() { nVars = 0; prevTerm = null; curTerm = null; curFactor = null; invalidExpression = false; } public void StartTerm() { curTerm = new TermInformation(); } public void StartFactor(int state) { curFactor = new FactorInformation(); curFactor.factorType = state; } public void AddVarToCurrentFactor(int state) { Contract.Assert(Automaton.FirstDynamicState <= state); Contract.Assert(curTerm != null); Contract.Assert(curFactor != null); nVars++; curFactor.numVarReferences++; if (curFactor.factorType == Automaton.StateVariableFactorStart) { Contract.Assert(curFactor.variableState < 0); // not set before curFactor.variableState = state; } else if (curFactor.factorType == Automaton.StateExpFactorStart) { curFactor.expVariableStates.Add(state); } else if (curFactor.factorType == Automaton.StateLogFactorStart || curFactor.factorType == Automaton.StateInvFactorStart) { curFactor.polyVariableStates.Last().Add(state); } else throw new InvalidProgramException(); } public void StartNewTermInPoly() { curFactor.polyVariableStates.Add(new List()); } public void EndFactor() { // enforce non-decreasing factors if (curTerm.factors.Any() && CompareFactors(curTerm.factors.Last(), curFactor) > 0) invalidExpression = true; curTerm.factors.Add(curFactor); curFactor = null; } public void EndTerm() { // enforce non-decreasing terms (TODO: equal terms should not be allowed) if (prevTerm != null && CompareTerms(prevTerm, curTerm) > 0) invalidExpression = true; prevTerm = curTerm; curTerm = null; } } }