[14386] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
[14891] | 24 | using HeuristicLab.Core;
|
---|
[14386] | 25 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 26 |
|
---|
[14936] | 27 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[14386] | 28 | [StorableClass]
|
---|
[14887] | 29 | // conditionally positive definite. (need to add polynomials) see http://num.math.uni-goettingen.de/schaback/teaching/sc.pdf
|
---|
[14891] | 30 | [Item("MultiquadraticKernel", "A kernel function that uses the multi-quadratic function sqrt(1+||x-c||²/beta²). Similar to http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/ with beta as a scaling factor.")]
|
---|
[14872] | 31 | public class MultiquadraticKernel : KernelBase {
|
---|
[14386] | 32 |
|
---|
[14891] | 33 | private const double C = 1.0;
|
---|
[15156] | 34 |
|
---|
[14386] | 35 | [StorableConstructor]
|
---|
| 36 | protected MultiquadraticKernel(bool deserializing) : base(deserializing) { }
|
---|
[15156] | 37 |
|
---|
[15158] | 38 | protected MultiquadraticKernel(MultiquadraticKernel original, Cloner cloner) : base(original, cloner) { }
|
---|
[14386] | 39 |
|
---|
[15156] | 40 | public MultiquadraticKernel() { }
|
---|
| 41 |
|
---|
[14386] | 42 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[14872] | 43 | return new MultiquadraticKernel(this, cloner);
|
---|
[14386] | 44 | }
|
---|
[15156] | 45 |
|
---|
[14386] | 46 | protected override double Get(double norm) {
|
---|
[15158] | 47 | if (Beta == null) throw new InvalidOperationException("Can not calculate kernel distance while Beta is null");
|
---|
[14887] | 48 | var beta = Beta.Value;
|
---|
| 49 | if (Math.Abs(beta) < double.Epsilon) return double.NaN;
|
---|
[14891] | 50 | var d = norm / beta;
|
---|
| 51 | return Math.Sqrt(C + d * d);
|
---|
[14386] | 52 | }
|
---|
| 53 |
|
---|
[14891] | 54 | //-n²/(d³*sqrt(C+n²/d²))
|
---|
[14386] | 55 | protected override double GetGradient(double norm) {
|
---|
[15158] | 56 | if (Beta == null) throw new InvalidOperationException("Can not calculate kernel distance gradient while Beta is null");
|
---|
[14887] | 57 | var beta = Beta.Value;
|
---|
| 58 | if (Math.Abs(beta) < double.Epsilon) return double.NaN;
|
---|
[14891] | 59 | var d = norm / beta;
|
---|
| 60 | return -d * d / (beta * Math.Sqrt(C + d * d));
|
---|
[14386] | 61 | }
|
---|
| 62 | }
|
---|
| 63 | }
|
---|