#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * and the BEACON Center for the Study of Evolution in Action. * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Globalization; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.Algorithms.DataAnalysis { [StorableClass] [Item("RegressionTreeModel", "Represents a decision tree for regression.")] public sealed class RegressionTreeModel : NamedItem, IRegressionModel { // trees are represented as a flat array internal struct TreeNode { public readonly static string NO_VARIABLE = null; public TreeNode(string varName, double val, int leftIdx = -1, int rightIdx = -1) : this() { VarName = varName; Val = val; LeftIdx = leftIdx; RightIdx = rightIdx; } public string VarName { get; private set; } // name of the variable for splitting or NO_VARIABLE if terminal node public double Val { get; private set; } // threshold public int LeftIdx { get; private set; } public int RightIdx { get; private set; } internal IList Data { get; set; } // only necessary to improve efficiency of evaluation // necessary because the default implementation of GetHashCode for structs in .NET would only return the hashcode of val here public override int GetHashCode() { return LeftIdx ^ RightIdx ^ Val.GetHashCode(); } // necessary because of GetHashCode override public override bool Equals(object obj) { if (obj is TreeNode) { var other = (TreeNode)obj; return Val.Equals(other.Val) && LeftIdx.Equals(other.LeftIdx) && RightIdx.Equals(other.RightIdx) && EqualStrings(VarName, other.VarName); } else { return false; } } private bool EqualStrings(string a, string b) { return (a == null && b == null) || (a != null && b != null && a.Equals(b)); } } // not storable! private TreeNode[] tree; [Storable] // to prevent storing the references to data caches in nodes private Tuple[] SerializedTree { get { return tree.Select(t => Tuple.Create(t.VarName, t.Val, t.LeftIdx, t.RightIdx)).ToArray(); } set { this.tree = value.Select(t => new TreeNode(t.Item1, t.Item2, t.Item3, t.Item4)).ToArray(); } } [StorableConstructor] private RegressionTreeModel(bool serializing) : base(serializing) { } // cloning ctor private RegressionTreeModel(RegressionTreeModel original, Cloner cloner) : base(original, cloner) { if (original.tree != null) { this.tree = new TreeNode[original.tree.Length]; Array.Copy(original.tree, this.tree, this.tree.Length); } } internal RegressionTreeModel(TreeNode[] tree) : base("RegressionTreeModel", "Represents a decision tree for regression.") { this.tree = tree; } private static double GetPredictionForRow(TreeNode[] t, int nodeIdx, int row) { while (nodeIdx != -1) { var node = t[nodeIdx]; if (node.VarName == TreeNode.NO_VARIABLE) return node.Val; if (node.Data[row] <= node.Val) nodeIdx = node.LeftIdx; else nodeIdx = node.RightIdx; } throw new InvalidOperationException("Invalid tree in RegressionTreeModel"); } public override IDeepCloneable Clone(Cloner cloner) { return new RegressionTreeModel(this, cloner); } public IEnumerable GetEstimatedValues(IDataset ds, IEnumerable rows) { // lookup columns for variableNames in one pass over the tree to speed up evaluation later on for (int i = 0; i < tree.Length; i++) { if (tree[i].VarName != TreeNode.NO_VARIABLE) { tree[i].Data = ds.GetReadOnlyDoubleValues(tree[i].VarName); } } return rows.Select(r => GetPredictionForRow(tree, 0, r)); } public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) { return new RegressionSolution(this, new RegressionProblemData(problemData)); } // mainly for debugging public override string ToString() { return TreeToString(0, ""); } private string TreeToString(int idx, string part) { var n = tree[idx]; if (n.VarName == TreeNode.NO_VARIABLE) { return string.Format(CultureInfo.InvariantCulture, "{0} -> {1:F}{2}", part, n.Val, Environment.NewLine); } else { return TreeToString(n.LeftIdx, string.Format(CultureInfo.InvariantCulture, "{0}{1}{2} <= {3:F}", part, string.IsNullOrEmpty(part) ? "" : " and ", n.VarName, n.Val)) + TreeToString(n.RightIdx, string.Format(CultureInfo.InvariantCulture, "{0}{1}{2} > {3:F}", part, string.IsNullOrEmpty(part) ? "" : " and ", n.VarName, n.Val)); } } } }