Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/GradientBoostedTreesSolution.cs @ 15263

Last change on this file since 15263 was 14345, checked in by gkronber, 8 years ago

#2690: implemented methods to generate symbolic expression tree solutions for decision tree models (random forest and gradient boosted) as well as views which make it possible to inspect each of the individual trees in a GBT and RF solution

File size: 1.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using HeuristicLab.Common;
23using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
24using HeuristicLab.Problems.DataAnalysis;
25
26namespace HeuristicLab.Algorithms.DataAnalysis {
27  [StorableClass]
28  public sealed class GradientBoostedTreesSolution : RegressionSolution {
29    public new IGradientBoostedTreesModel Model {
30      get { return (IGradientBoostedTreesModel)base.Model; }
31    }
32
33
34    [StorableConstructor]
35    private GradientBoostedTreesSolution(bool deserializing)
36      : base(deserializing) {
37    }
38    private GradientBoostedTreesSolution(GradientBoostedTreesSolution original, Cloner cloner)
39      : base(original, cloner) {
40    }
41    public GradientBoostedTreesSolution(IRegressionModel model, IRegressionProblemData problemData)
42      : base(model, problemData) {
43    }
44
45    public override IDeepCloneable Clone(Cloner cloner) {
46      return new GradientBoostedTreesSolution(this, cloner);
47    }
48  }
49}
Note: See TracBrowser for help on using the repository browser.