1 | #region License Information |
---|
2 | /* HeuristicLab |
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) |
---|
4 | * and the BEACON Center for the Study of Evolution in Action. |
---|
5 | * |
---|
6 | * This file is part of HeuristicLab. |
---|
7 | * |
---|
8 | * HeuristicLab is free software: you can redistribute it and/or modify |
---|
9 | * it under the terms of the GNU General Public License as published by |
---|
10 | * the Free Software Foundation, either version 3 of the License, or |
---|
11 | * (at your option) any later version. |
---|
12 | * |
---|
13 | * HeuristicLab is distributed in the hope that it will be useful, |
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
16 | * GNU General Public License for more details. |
---|
17 | * |
---|
18 | * You should have received a copy of the GNU General Public License |
---|
19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>. |
---|
20 | */ |
---|
21 | #endregion |
---|
22 | |
---|
23 | using System; |
---|
24 | using System.Linq; |
---|
25 | using System.Threading; |
---|
26 | using HeuristicLab.Analysis; |
---|
27 | using HeuristicLab.Common; |
---|
28 | using HeuristicLab.Core; |
---|
29 | using HeuristicLab.Data; |
---|
30 | using HeuristicLab.Optimization; |
---|
31 | using HeuristicLab.Parameters; |
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; |
---|
33 | using HeuristicLab.PluginInfrastructure; |
---|
34 | using HeuristicLab.Problems.DataAnalysis; |
---|
35 | |
---|
36 | namespace HeuristicLab.Algorithms.DataAnalysis { |
---|
37 | [Item("Gradient Boosted Trees (GBT)", "Gradient boosted trees algorithm. Specific implementation of gradient boosting for regression trees. Friedman, J. \"Greedy Function Approximation: A Gradient Boosting Machine\", IMS 1999 Reitz Lecture.")] |
---|
38 | [StorableClass] |
---|
39 | [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 125)] |
---|
40 | public class GradientBoostedTreesAlgorithm : BasicAlgorithm { |
---|
41 | public override Type ProblemType { |
---|
42 | get { return typeof(IRegressionProblem); } |
---|
43 | } |
---|
44 | public new IRegressionProblem Problem { |
---|
45 | get { return (IRegressionProblem)base.Problem; } |
---|
46 | set { base.Problem = value; } |
---|
47 | } |
---|
48 | |
---|
49 | #region ParameterNames |
---|
50 | private const string IterationsParameterName = "Iterations"; |
---|
51 | private const string MaxSizeParameterName = "Maximum Tree Size"; |
---|
52 | private const string NuParameterName = "Nu"; |
---|
53 | private const string RParameterName = "R"; |
---|
54 | private const string MParameterName = "M"; |
---|
55 | private const string SeedParameterName = "Seed"; |
---|
56 | private const string SetSeedRandomlyParameterName = "SetSeedRandomly"; |
---|
57 | private const string LossFunctionParameterName = "LossFunction"; |
---|
58 | private const string UpdateIntervalParameterName = "UpdateInterval"; |
---|
59 | private const string CreateSolutionParameterName = "CreateSolution"; |
---|
60 | #endregion |
---|
61 | |
---|
62 | #region ParameterProperties |
---|
63 | public IFixedValueParameter<IntValue> IterationsParameter { |
---|
64 | get { return (IFixedValueParameter<IntValue>)Parameters[IterationsParameterName]; } |
---|
65 | } |
---|
66 | public IFixedValueParameter<IntValue> MaxSizeParameter { |
---|
67 | get { return (IFixedValueParameter<IntValue>)Parameters[MaxSizeParameterName]; } |
---|
68 | } |
---|
69 | public IFixedValueParameter<DoubleValue> NuParameter { |
---|
70 | get { return (IFixedValueParameter<DoubleValue>)Parameters[NuParameterName]; } |
---|
71 | } |
---|
72 | public IFixedValueParameter<DoubleValue> RParameter { |
---|
73 | get { return (IFixedValueParameter<DoubleValue>)Parameters[RParameterName]; } |
---|
74 | } |
---|
75 | public IFixedValueParameter<DoubleValue> MParameter { |
---|
76 | get { return (IFixedValueParameter<DoubleValue>)Parameters[MParameterName]; } |
---|
77 | } |
---|
78 | public IFixedValueParameter<IntValue> SeedParameter { |
---|
79 | get { return (IFixedValueParameter<IntValue>)Parameters[SeedParameterName]; } |
---|
80 | } |
---|
81 | public FixedValueParameter<BoolValue> SetSeedRandomlyParameter { |
---|
82 | get { return (FixedValueParameter<BoolValue>)Parameters[SetSeedRandomlyParameterName]; } |
---|
83 | } |
---|
84 | public IConstrainedValueParameter<ILossFunction> LossFunctionParameter { |
---|
85 | get { return (IConstrainedValueParameter<ILossFunction>)Parameters[LossFunctionParameterName]; } |
---|
86 | } |
---|
87 | public IFixedValueParameter<IntValue> UpdateIntervalParameter { |
---|
88 | get { return (IFixedValueParameter<IntValue>)Parameters[UpdateIntervalParameterName]; } |
---|
89 | } |
---|
90 | public IFixedValueParameter<BoolValue> CreateSolutionParameter { |
---|
91 | get { return (IFixedValueParameter<BoolValue>)Parameters[CreateSolutionParameterName]; } |
---|
92 | } |
---|
93 | #endregion |
---|
94 | |
---|
95 | #region Properties |
---|
96 | public int Iterations { |
---|
97 | get { return IterationsParameter.Value.Value; } |
---|
98 | set { IterationsParameter.Value.Value = value; } |
---|
99 | } |
---|
100 | public int Seed { |
---|
101 | get { return SeedParameter.Value.Value; } |
---|
102 | set { SeedParameter.Value.Value = value; } |
---|
103 | } |
---|
104 | public bool SetSeedRandomly { |
---|
105 | get { return SetSeedRandomlyParameter.Value.Value; } |
---|
106 | set { SetSeedRandomlyParameter.Value.Value = value; } |
---|
107 | } |
---|
108 | public int MaxSize { |
---|
109 | get { return MaxSizeParameter.Value.Value; } |
---|
110 | set { MaxSizeParameter.Value.Value = value; } |
---|
111 | } |
---|
112 | public double Nu { |
---|
113 | get { return NuParameter.Value.Value; } |
---|
114 | set { NuParameter.Value.Value = value; } |
---|
115 | } |
---|
116 | public double R { |
---|
117 | get { return RParameter.Value.Value; } |
---|
118 | set { RParameter.Value.Value = value; } |
---|
119 | } |
---|
120 | public double M { |
---|
121 | get { return MParameter.Value.Value; } |
---|
122 | set { MParameter.Value.Value = value; } |
---|
123 | } |
---|
124 | public bool CreateSolution { |
---|
125 | get { return CreateSolutionParameter.Value.Value; } |
---|
126 | set { CreateSolutionParameter.Value.Value = value; } |
---|
127 | } |
---|
128 | #endregion |
---|
129 | |
---|
130 | #region ResultsProperties |
---|
131 | private double ResultsBestQuality { |
---|
132 | get { return ((DoubleValue)Results["Best Quality"].Value).Value; } |
---|
133 | set { ((DoubleValue)Results["Best Quality"].Value).Value = value; } |
---|
134 | } |
---|
135 | private DataTable ResultsQualities { |
---|
136 | get { return ((DataTable)Results["Qualities"].Value); } |
---|
137 | } |
---|
138 | #endregion |
---|
139 | |
---|
140 | [StorableConstructor] |
---|
141 | protected GradientBoostedTreesAlgorithm(bool deserializing) : base(deserializing) { } |
---|
142 | |
---|
143 | protected GradientBoostedTreesAlgorithm(GradientBoostedTreesAlgorithm original, Cloner cloner) |
---|
144 | : base(original, cloner) { |
---|
145 | } |
---|
146 | |
---|
147 | public override IDeepCloneable Clone(Cloner cloner) { |
---|
148 | return new GradientBoostedTreesAlgorithm(this, cloner); |
---|
149 | } |
---|
150 | |
---|
151 | public GradientBoostedTreesAlgorithm() { |
---|
152 | Problem = new RegressionProblem(); // default problem |
---|
153 | |
---|
154 | Parameters.Add(new FixedValueParameter<IntValue>(IterationsParameterName, "Number of iterations (set as high as possible, adjust in combination with nu, when increasing iterations also decrease nu)", new IntValue(1000))); |
---|
155 | Parameters.Add(new FixedValueParameter<IntValue>(SeedParameterName, "The random seed used to initialize the new pseudo random number generator.", new IntValue(0))); |
---|
156 | Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyParameterName, "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true))); |
---|
157 | Parameters.Add(new FixedValueParameter<IntValue>(MaxSizeParameterName, "Maximal size of the tree learned in each step (prefer smaller sizes if possible)", new IntValue(10))); |
---|
158 | Parameters.Add(new FixedValueParameter<DoubleValue>(RParameterName, "Ratio of training rows selected randomly in each step (0 < R <= 1)", new DoubleValue(0.5))); |
---|
159 | Parameters.Add(new FixedValueParameter<DoubleValue>(MParameterName, "Ratio of variables selected randomly in each step (0 < M <= 1)", new DoubleValue(0.5))); |
---|
160 | Parameters.Add(new FixedValueParameter<DoubleValue>(NuParameterName, "Learning rate nu (step size for the gradient update, should be small 0 < nu < 0.1)", new DoubleValue(0.002))); |
---|
161 | Parameters.Add(new FixedValueParameter<IntValue>(UpdateIntervalParameterName, "", new IntValue(100))); |
---|
162 | Parameters[UpdateIntervalParameterName].Hidden = true; |
---|
163 | Parameters.Add(new FixedValueParameter<BoolValue>(CreateSolutionParameterName, "Flag that indicates if a solution should be produced at the end of the run", new BoolValue(true))); |
---|
164 | Parameters[CreateSolutionParameterName].Hidden = true; |
---|
165 | |
---|
166 | var lossFunctions = ApplicationManager.Manager.GetInstances<ILossFunction>(); |
---|
167 | Parameters.Add(new ConstrainedValueParameter<ILossFunction>(LossFunctionParameterName, "The loss function", new ItemSet<ILossFunction>(lossFunctions))); |
---|
168 | LossFunctionParameter.Value = LossFunctionParameter.ValidValues.First(f => f.ToString().Contains("Squared")); // squared error loss is the default |
---|
169 | } |
---|
170 | |
---|
171 | [StorableHook(HookType.AfterDeserialization)] |
---|
172 | private void AfterDeserialization() { |
---|
173 | // BackwardsCompatibility3.4 |
---|
174 | #region Backwards compatible code, remove with 3.5 |
---|
175 | // parameter type has been changed |
---|
176 | var lossFunctionParam = Parameters[LossFunctionParameterName] as ConstrainedValueParameter<StringValue>; |
---|
177 | if (lossFunctionParam != null) { |
---|
178 | Parameters.Remove(LossFunctionParameterName); |
---|
179 | var selectedValue = lossFunctionParam.Value; // to be restored below |
---|
180 | |
---|
181 | var lossFunctions = ApplicationManager.Manager.GetInstances<ILossFunction>(); |
---|
182 | Parameters.Add(new ConstrainedValueParameter<ILossFunction>(LossFunctionParameterName, "The loss function", new ItemSet<ILossFunction>(lossFunctions))); |
---|
183 | // try to restore selected value |
---|
184 | var selectedLossFunction = |
---|
185 | LossFunctionParameter.ValidValues.FirstOrDefault(f => f.ToString() == selectedValue.Value); |
---|
186 | if (selectedLossFunction != null) { |
---|
187 | LossFunctionParameter.Value = selectedLossFunction; |
---|
188 | } else { |
---|
189 | LossFunctionParameter.Value = LossFunctionParameter.ValidValues.First(f => f.ToString().Contains("Squared")); // default: SE |
---|
190 | } |
---|
191 | } |
---|
192 | #endregion |
---|
193 | } |
---|
194 | |
---|
195 | protected override void Run(CancellationToken cancellationToken) { |
---|
196 | // Set up the algorithm |
---|
197 | if (SetSeedRandomly) Seed = new System.Random().Next(); |
---|
198 | |
---|
199 | // Set up the results display |
---|
200 | var iterations = new IntValue(0); |
---|
201 | Results.Add(new Result("Iterations", iterations)); |
---|
202 | |
---|
203 | var table = new DataTable("Qualities"); |
---|
204 | table.Rows.Add(new DataRow("Loss (train)")); |
---|
205 | table.Rows.Add(new DataRow("Loss (test)")); |
---|
206 | Results.Add(new Result("Qualities", table)); |
---|
207 | var curLoss = new DoubleValue(); |
---|
208 | Results.Add(new Result("Loss (train)", curLoss)); |
---|
209 | |
---|
210 | // init |
---|
211 | var problemData = (IRegressionProblemData)Problem.ProblemData.Clone(); |
---|
212 | var lossFunction = LossFunctionParameter.Value; |
---|
213 | var state = GradientBoostedTreesAlgorithmStatic.CreateGbmState(problemData, lossFunction, (uint)Seed, MaxSize, R, M, Nu); |
---|
214 | |
---|
215 | var updateInterval = UpdateIntervalParameter.Value.Value; |
---|
216 | // Loop until iteration limit reached or canceled. |
---|
217 | for (int i = 0; i < Iterations; i++) { |
---|
218 | cancellationToken.ThrowIfCancellationRequested(); |
---|
219 | |
---|
220 | GradientBoostedTreesAlgorithmStatic.MakeStep(state); |
---|
221 | |
---|
222 | // iteration results |
---|
223 | if (i % updateInterval == 0) { |
---|
224 | curLoss.Value = state.GetTrainLoss(); |
---|
225 | table.Rows["Loss (train)"].Values.Add(curLoss.Value); |
---|
226 | table.Rows["Loss (test)"].Values.Add(state.GetTestLoss()); |
---|
227 | iterations.Value = i; |
---|
228 | } |
---|
229 | } |
---|
230 | |
---|
231 | // final results |
---|
232 | iterations.Value = Iterations; |
---|
233 | curLoss.Value = state.GetTrainLoss(); |
---|
234 | table.Rows["Loss (train)"].Values.Add(curLoss.Value); |
---|
235 | table.Rows["Loss (test)"].Values.Add(state.GetTestLoss()); |
---|
236 | |
---|
237 | // produce variable relevance |
---|
238 | var orderedImpacts = state.GetVariableRelevance().Select(t => new { name = t.Key, impact = t.Value }).ToList(); |
---|
239 | |
---|
240 | var impacts = new DoubleMatrix(); |
---|
241 | var matrix = impacts as IStringConvertibleMatrix; |
---|
242 | matrix.Rows = orderedImpacts.Count; |
---|
243 | matrix.RowNames = orderedImpacts.Select(x => x.name); |
---|
244 | matrix.Columns = 1; |
---|
245 | matrix.ColumnNames = new string[] { "Relative variable relevance" }; |
---|
246 | |
---|
247 | int rowIdx = 0; |
---|
248 | foreach (var p in orderedImpacts) { |
---|
249 | matrix.SetValue(string.Format("{0:N2}", p.impact), rowIdx++, 0); |
---|
250 | } |
---|
251 | |
---|
252 | Results.Add(new Result("Variable relevance", impacts)); |
---|
253 | Results.Add(new Result("Loss (test)", new DoubleValue(state.GetTestLoss()))); |
---|
254 | |
---|
255 | // produce solution |
---|
256 | if (CreateSolution) { |
---|
257 | var model = state.GetModel(); |
---|
258 | |
---|
259 | // for logistic regression we produce a classification solution |
---|
260 | if (lossFunction is LogisticRegressionLoss) { |
---|
261 | var classificationModel = new DiscriminantFunctionClassificationModel(model, |
---|
262 | new AccuracyMaximizationThresholdCalculator()); |
---|
263 | var classificationProblemData = new ClassificationProblemData(problemData.Dataset, |
---|
264 | problemData.AllowedInputVariables, problemData.TargetVariable, problemData.Transformations); |
---|
265 | classificationModel.RecalculateModelParameters(classificationProblemData, classificationProblemData.TrainingIndices); |
---|
266 | |
---|
267 | var classificationSolution = new DiscriminantFunctionClassificationSolution(classificationModel, classificationProblemData); |
---|
268 | Results.Add(new Result("Solution", classificationSolution)); |
---|
269 | } else { |
---|
270 | // otherwise we produce a regression solution |
---|
271 | Results.Add(new Result("Solution", new GradientBoostedTreesSolution(model, problemData))); |
---|
272 | } |
---|
273 | } |
---|
274 | } |
---|
275 | } |
---|
276 | } |
---|