#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * and the BEACON Center for the Study of Evolution in Action. * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using System.Threading; using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.PluginInfrastructure; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.Algorithms.DataAnalysis { [Item("Gradient Boosted Trees", "Gradient boosted trees algorithm. Friedman, J. \"Greedy Function Approximation: A Gradient Boosting Machine\", IMS 1999 Reitz Lecture.")] [StorableClass] [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 125)] public class GradientBoostedTreesAlgorithm : BasicAlgorithm { public override Type ProblemType { get { return typeof(IRegressionProblem); } } public new IRegressionProblem Problem { get { return (IRegressionProblem)base.Problem; } set { base.Problem = value; } } #region ParameterNames private const string IterationsParameterName = "Iterations"; private const string MaxSizeParameterName = "Maximum Tree Size"; private const string NuParameterName = "Nu"; private const string RParameterName = "R"; private const string MParameterName = "M"; private const string SeedParameterName = "Seed"; private const string SetSeedRandomlyParameterName = "SetSeedRandomly"; private const string LossFunctionParameterName = "LossFunction"; private const string UpdateIntervalParameterName = "UpdateInterval"; private const string CreateSolutionParameterName = "CreateSolution"; #endregion #region ParameterProperties public IFixedValueParameter IterationsParameter { get { return (IFixedValueParameter)Parameters[IterationsParameterName]; } } public IFixedValueParameter MaxSizeParameter { get { return (IFixedValueParameter)Parameters[MaxSizeParameterName]; } } public IFixedValueParameter NuParameter { get { return (IFixedValueParameter)Parameters[NuParameterName]; } } public IFixedValueParameter RParameter { get { return (IFixedValueParameter)Parameters[RParameterName]; } } public IFixedValueParameter MParameter { get { return (IFixedValueParameter)Parameters[MParameterName]; } } public IFixedValueParameter SeedParameter { get { return (IFixedValueParameter)Parameters[SeedParameterName]; } } public FixedValueParameter SetSeedRandomlyParameter { get { return (FixedValueParameter)Parameters[SetSeedRandomlyParameterName]; } } public IConstrainedValueParameter LossFunctionParameter { get { return (IConstrainedValueParameter)Parameters[LossFunctionParameterName]; } } public IFixedValueParameter UpdateIntervalParameter { get { return (IFixedValueParameter)Parameters[UpdateIntervalParameterName]; } } public IFixedValueParameter CreateSolutionParameter { get { return (IFixedValueParameter)Parameters[CreateSolutionParameterName]; } } #endregion #region Properties public int Iterations { get { return IterationsParameter.Value.Value; } set { IterationsParameter.Value.Value = value; } } public int Seed { get { return SeedParameter.Value.Value; } set { SeedParameter.Value.Value = value; } } public bool SetSeedRandomly { get { return SetSeedRandomlyParameter.Value.Value; } set { SetSeedRandomlyParameter.Value.Value = value; } } public int MaxSize { get { return MaxSizeParameter.Value.Value; } set { MaxSizeParameter.Value.Value = value; } } public double Nu { get { return NuParameter.Value.Value; } set { NuParameter.Value.Value = value; } } public double R { get { return RParameter.Value.Value; } set { RParameter.Value.Value = value; } } public double M { get { return MParameter.Value.Value; } set { MParameter.Value.Value = value; } } public bool CreateSolution { get { return CreateSolutionParameter.Value.Value; } set { CreateSolutionParameter.Value.Value = value; } } #endregion #region ResultsProperties private double ResultsBestQuality { get { return ((DoubleValue)Results["Best Quality"].Value).Value; } set { ((DoubleValue)Results["Best Quality"].Value).Value = value; } } private DataTable ResultsQualities { get { return ((DataTable)Results["Qualities"].Value); } } #endregion [StorableConstructor] protected GradientBoostedTreesAlgorithm(bool deserializing) : base(deserializing) { } protected GradientBoostedTreesAlgorithm(GradientBoostedTreesAlgorithm original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new GradientBoostedTreesAlgorithm(this, cloner); } public GradientBoostedTreesAlgorithm() { Problem = new RegressionProblem(); // default problem Parameters.Add(new FixedValueParameter(IterationsParameterName, "Number of iterations (set as high as possible, adjust in combination with nu, when increasing iterations also decrease nu)", new IntValue(1000))); Parameters.Add(new FixedValueParameter(SeedParameterName, "The random seed used to initialize the new pseudo random number generator.", new IntValue(0))); Parameters.Add(new FixedValueParameter(SetSeedRandomlyParameterName, "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true))); Parameters.Add(new FixedValueParameter(MaxSizeParameterName, "Maximal size of the tree learned in each step (prefer smaller sizes if possible)", new IntValue(10))); Parameters.Add(new FixedValueParameter(RParameterName, "Ratio of training rows selected randomly in each step (0 < R <= 1)", new DoubleValue(0.5))); Parameters.Add(new FixedValueParameter(MParameterName, "Ratio of variables selected randomly in each step (0 < M <= 1)", new DoubleValue(0.5))); Parameters.Add(new FixedValueParameter(NuParameterName, "Learning rate nu (step size for the gradient update, should be small 0 < nu < 0.1)", new DoubleValue(0.002))); Parameters.Add(new FixedValueParameter(UpdateIntervalParameterName, "", new IntValue(100))); Parameters[UpdateIntervalParameterName].Hidden = true; Parameters.Add(new FixedValueParameter(CreateSolutionParameterName, "Flag that indicates if a solution should be produced at the end of the run", new BoolValue(true))); Parameters[CreateSolutionParameterName].Hidden = true; var lossFunctions = ApplicationManager.Manager.GetInstances(); Parameters.Add(new ConstrainedValueParameter(LossFunctionParameterName, "The loss function", new ItemSet(lossFunctions))); LossFunctionParameter.Value = LossFunctionParameter.ValidValues.First(f => f.ToString().Contains("Squared")); // squared error loss is the default } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { // BackwardsCompatibility3.4 #region Backwards compatible code, remove with 3.5 // parameter type has been changed var lossFunctionParam = Parameters[LossFunctionParameterName] as ConstrainedValueParameter; if (lossFunctionParam != null) { Parameters.Remove(LossFunctionParameterName); var selectedValue = lossFunctionParam.Value; // to be restored below var lossFunctions = ApplicationManager.Manager.GetInstances(); Parameters.Add(new ConstrainedValueParameter(LossFunctionParameterName, "The loss function", new ItemSet(lossFunctions))); // try to restore selected value var selectedLossFunction = LossFunctionParameter.ValidValues.FirstOrDefault(f => f.ToString() == selectedValue.Value); if (selectedLossFunction != null) { LossFunctionParameter.Value = selectedLossFunction; } else { LossFunctionParameter.Value = LossFunctionParameter.ValidValues.First(f => f.ToString().Contains("Squared")); // default: SE } } #endregion } protected override void Run(CancellationToken cancellationToken) { // Set up the algorithm if (SetSeedRandomly) Seed = new System.Random().Next(); // Set up the results display var iterations = new IntValue(0); Results.Add(new Result("Iterations", iterations)); var table = new DataTable("Qualities"); table.Rows.Add(new DataRow("Loss (train)")); table.Rows.Add(new DataRow("Loss (test)")); Results.Add(new Result("Qualities", table)); var curLoss = new DoubleValue(); Results.Add(new Result("Loss (train)", curLoss)); // init var problemData = (IRegressionProblemData)Problem.ProblemData.Clone(); var lossFunction = LossFunctionParameter.Value; var state = GradientBoostedTreesAlgorithmStatic.CreateGbmState(problemData, lossFunction, (uint)Seed, MaxSize, R, M, Nu); var updateInterval = UpdateIntervalParameter.Value.Value; // Loop until iteration limit reached or canceled. for (int i = 0; i < Iterations; i++) { cancellationToken.ThrowIfCancellationRequested(); GradientBoostedTreesAlgorithmStatic.MakeStep(state); // iteration results if (i % updateInterval == 0) { curLoss.Value = state.GetTrainLoss(); table.Rows["Loss (train)"].Values.Add(curLoss.Value); table.Rows["Loss (test)"].Values.Add(state.GetTestLoss()); iterations.Value = i; } } // final results iterations.Value = Iterations; curLoss.Value = state.GetTrainLoss(); table.Rows["Loss (train)"].Values.Add(curLoss.Value); table.Rows["Loss (test)"].Values.Add(state.GetTestLoss()); // produce variable relevance var orderedImpacts = state.GetVariableRelevance().Select(t => new { name = t.Key, impact = t.Value }).ToList(); var impacts = new DoubleMatrix(); var matrix = impacts as IStringConvertibleMatrix; matrix.Rows = orderedImpacts.Count; matrix.RowNames = orderedImpacts.Select(x => x.name); matrix.Columns = 1; matrix.ColumnNames = new string[] { "Relative variable relevance" }; int rowIdx = 0; foreach (var p in orderedImpacts) { matrix.SetValue(string.Format("{0:N2}", p.impact), rowIdx++, 0); } Results.Add(new Result("Variable relevance", impacts)); Results.Add(new Result("Loss (test)", new DoubleValue(state.GetTestLoss()))); // produce solution if (CreateSolution) { var model = state.GetModel(); // for logistic regression we produce a classification solution if (lossFunction is LogisticRegressionLoss) { var classificationModel = new DiscriminantFunctionClassificationModel(model, new AccuracyMaximizationThresholdCalculator()); var classificationProblemData = new ClassificationProblemData(problemData.Dataset, problemData.AllowedInputVariables, problemData.TargetVariable, problemData.Transformations); classificationModel.RecalculateModelParameters(classificationProblemData, classificationProblemData.TrainingIndices); var classificationSolution = new DiscriminantFunctionClassificationSolution(classificationModel, classificationProblemData); Results.Add(new Result("Solution", classificationSolution)); } else { // otherwise we produce a regression solution Results.Add(new Result("Solution", new RegressionSolution(model, problemData))); } } } } }