#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.Algorithms.DataAnalysis { /// /// Represents a Gaussian process solution for a regression problem which can be visualized in the GUI. /// [Item("GaussianProcessRegressionSolution", "Represents a Gaussian process solution for a regression problem which can be visualized in the GUI.")] [StorableClass] public sealed class GaussianProcessRegressionSolution : RegressionSolution, IGaussianProcessSolution { public new IGaussianProcessModel Model { get { return (IGaussianProcessModel)base.Model; } set { base.Model = value; } } [StorableConstructor] private GaussianProcessRegressionSolution(bool deserializing) : base(deserializing) { } private GaussianProcessRegressionSolution(GaussianProcessRegressionSolution original, Cloner cloner) : base(original, cloner) { } public GaussianProcessRegressionSolution(IGaussianProcessModel model, IRegressionProblemData problemData) : base(model, problemData) { RecalculateResults(); } public override IDeepCloneable Clone(Cloner cloner) { return new GaussianProcessRegressionSolution(this, cloner); } public IEnumerable EstimatedVariance { get { return GetEstimatedVariance(Enumerable.Range(0, ProblemData.Dataset.Rows)); } } public IEnumerable EstimatedTrainingVariance { get { return GetEstimatedVariance(ProblemData.TrainingIndices); } } public IEnumerable EstimatedTestVariance { get { return GetEstimatedVariance(ProblemData.TestIndices); } } public IEnumerable GetEstimatedVariance(IEnumerable rows) { return Model.GetEstimatedVariance(ProblemData.Dataset, rows); } } }