#region License Information /* HeuristicLab * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.Algorithms.DataAnalysis { /// /// Represents a Gaussian process model. /// [StorableClass] [Item("GaussianProcessModel", "Represents a Gaussian process posterior.")] public sealed class GaussianProcessModel : NamedItem, IGaussianProcessModel { [Storable] private double negativeLogLikelihood; public double NegativeLogLikelihood { get { return negativeLogLikelihood; } } [Storable] private double[] hyperparameterGradients; public double[] HyperparameterGradients { get { var copy = new double[hyperparameterGradients.Length]; Array.Copy(hyperparameterGradients, copy, copy.Length); return copy; } } [Storable] private ICovarianceFunction covarianceFunction; public ICovarianceFunction CovarianceFunction { get { return covarianceFunction; } } [Storable] private IMeanFunction meanFunction; public IMeanFunction MeanFunction { get { return meanFunction; } } [Storable] private string targetVariable; public string TargetVariable { get { return targetVariable; } } [Storable] private string[] allowedInputVariables; public string[] AllowedInputVariables { get { return allowedInputVariables; } } [Storable] private double[] alpha; [Storable] private double sqrSigmaNoise; public double SigmaNoise { get { return Math.Sqrt(sqrSigmaNoise); } } [Storable] private double[] meanParameter; [Storable] private double[] covarianceParameter; [Storable] private double[,] l; [Storable] private double[,] x; [Storable] private Scaling inputScaling; [StorableConstructor] private GaussianProcessModel(bool deserializing) : base(deserializing) { } private GaussianProcessModel(GaussianProcessModel original, Cloner cloner) : base(original, cloner) { this.meanFunction = cloner.Clone(original.meanFunction); this.covarianceFunction = cloner.Clone(original.covarianceFunction); this.inputScaling = cloner.Clone(original.inputScaling); this.negativeLogLikelihood = original.negativeLogLikelihood; this.targetVariable = original.targetVariable; this.sqrSigmaNoise = original.sqrSigmaNoise; if (original.meanParameter != null) { this.meanParameter = (double[])original.meanParameter.Clone(); } if (original.covarianceParameter != null) { this.covarianceParameter = (double[])original.covarianceParameter.Clone(); } // shallow copies of arrays because they cannot be modified this.allowedInputVariables = original.allowedInputVariables; this.alpha = original.alpha; this.l = original.l; this.x = original.x; } public GaussianProcessModel(Dataset ds, string targetVariable, IEnumerable allowedInputVariables, IEnumerable rows, IEnumerable hyp, IMeanFunction meanFunction, ICovarianceFunction covarianceFunction) : base() { this.name = ItemName; this.description = ItemDescription; this.meanFunction = (IMeanFunction)meanFunction.Clone(); this.covarianceFunction = (ICovarianceFunction)covarianceFunction.Clone(); this.targetVariable = targetVariable; this.allowedInputVariables = allowedInputVariables.ToArray(); int nVariables = this.allowedInputVariables.Length; meanParameter = hyp .Take(this.meanFunction.GetNumberOfParameters(nVariables)) .ToArray(); covarianceParameter = hyp.Skip(this.meanFunction.GetNumberOfParameters(nVariables)) .Take(this.covarianceFunction.GetNumberOfParameters(nVariables)) .ToArray(); sqrSigmaNoise = Math.Exp(2.0 * hyp.Last()); CalculateModel(ds, rows); } private void CalculateModel(Dataset ds, IEnumerable rows) { inputScaling = new Scaling(ds, allowedInputVariables, rows); x = AlglibUtil.PrepareAndScaleInputMatrix(ds, allowedInputVariables, rows, inputScaling); var y = ds.GetDoubleValues(targetVariable, rows); int n = x.GetLength(0); l = new double[n, n]; // calculate means and covariances var mean = meanFunction.GetParameterizedMeanFunction(meanParameter, Enumerable.Range(0, x.GetLength(1))); double[] m = Enumerable.Range(0, x.GetLength(0)) .Select(r => mean.Mean(x, r)) .ToArray(); var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, Enumerable.Range(0, x.GetLength(1))); for (int i = 0; i < n; i++) { for (int j = i; j < n; j++) { l[j, i] = cov.Covariance(x, i, j) / sqrSigmaNoise; if (j == i) l[j, i] += 1.0; } } // cholesky decomposition int info; alglib.densesolverreport denseSolveRep; var res = alglib.trfac.spdmatrixcholesky(ref l, n, false); if (!res) throw new ArgumentException("Matrix is not positive semidefinite"); // calculate sum of diagonal elements for likelihood double diagSum = Enumerable.Range(0, n).Select(i => Math.Log(l[i, i])).Sum(); // solve for alpha double[] ym = y.Zip(m, (a, b) => a - b).ToArray(); alglib.spdmatrixcholeskysolve(l, n, false, ym, out info, out denseSolveRep, out alpha); for (int i = 0; i < alpha.Length; i++) alpha[i] = alpha[i] / sqrSigmaNoise; negativeLogLikelihood = 0.5 * Util.ScalarProd(ym, alpha) + diagSum + (n / 2.0) * Math.Log(2.0 * Math.PI * sqrSigmaNoise); // derivatives int nAllowedVariables = x.GetLength(1); alglib.matinvreport matInvRep; double[,] lCopy = new double[l.GetLength(0), l.GetLength(1)]; Array.Copy(l, lCopy, lCopy.Length); alglib.spdmatrixcholeskyinverse(ref lCopy, n, false, out info, out matInvRep); if (info != 1) throw new ArgumentException("Can't invert matrix to calculate gradients."); for (int i = 0; i < n; i++) { for (int j = 0; j <= i; j++) lCopy[i, j] = lCopy[i, j] / sqrSigmaNoise - alpha[i] * alpha[j]; } double noiseGradient = sqrSigmaNoise * Enumerable.Range(0, n).Select(i => lCopy[i, i]).Sum(); double[] meanGradients = new double[meanFunction.GetNumberOfParameters(nAllowedVariables)]; for (int k = 0; k < meanGradients.Length; k++) { var meanGrad = Enumerable.Range(0, alpha.Length) .Select(r => mean.Gradient(x, r, k)); meanGradients[k] = -Util.ScalarProd(meanGrad, alpha); } double[] covGradients = new double[covarianceFunction.GetNumberOfParameters(nAllowedVariables)]; if (covGradients.Length > 0) { for (int i = 0; i < n; i++) { for (int j = 0; j < i; j++) { var g = cov.CovarianceGradient(x, i, j).ToArray(); for (int k = 0; k < covGradients.Length; k++) { covGradients[k] += lCopy[i, j] * g[k]; } } var gDiag = cov.CovarianceGradient(x, i, i).ToArray(); for (int k = 0; k < covGradients.Length; k++) { // diag covGradients[k] += 0.5 * lCopy[i, i] * gDiag[k]; } } } hyperparameterGradients = meanGradients .Concat(covGradients) .Concat(new double[] { noiseGradient }).ToArray(); } public override IDeepCloneable Clone(Cloner cloner) { return new GaussianProcessModel(this, cloner); } // is called by the solution creator to set all parameter values of the covariance and mean function // to the optimized values (necessary to make the values visible in the GUI) public void FixParameters() { covarianceFunction.SetParameter(covarianceParameter); meanFunction.SetParameter(meanParameter); covarianceParameter = new double[0]; meanParameter = new double[0]; } #region IRegressionModel Members public IEnumerable GetEstimatedValues(Dataset dataset, IEnumerable rows) { return GetEstimatedValuesHelper(dataset, rows); } public GaussianProcessRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) { return new GaussianProcessRegressionSolution(this, new RegressionProblemData(problemData)); } IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) { return CreateRegressionSolution(problemData); } #endregion private IEnumerable GetEstimatedValuesHelper(Dataset dataset, IEnumerable rows) { var newX = AlglibUtil.PrepareAndScaleInputMatrix(dataset, allowedInputVariables, rows, inputScaling); int newN = newX.GetLength(0); int n = x.GetLength(0); var Ks = new double[newN, n]; var mean = meanFunction.GetParameterizedMeanFunction(meanParameter, Enumerable.Range(0, newX.GetLength(1))); var ms = Enumerable.Range(0, newX.GetLength(0)) .Select(r => mean.Mean(newX, r)) .ToArray(); var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, Enumerable.Range(0, newX.GetLength(1))); for (int i = 0; i < newN; i++) { for (int j = 0; j < n; j++) { Ks[i, j] = cov.CrossCovariance(x, newX, j, i); } } return Enumerable.Range(0, newN) .Select(i => ms[i] + Util.ScalarProd(Util.GetRow(Ks, i), alpha)); } public IEnumerable GetEstimatedVariance(Dataset dataset, IEnumerable rows) { var newX = AlglibUtil.PrepareAndScaleInputMatrix(dataset, allowedInputVariables, rows, inputScaling); int newN = newX.GetLength(0); int n = x.GetLength(0); var kss = new double[newN]; double[,] sWKs = new double[n, newN]; var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, Enumerable.Range(0, x.GetLength(1))); // for stddev for (int i = 0; i < newN; i++) kss[i] = cov.Covariance(newX, i, i); for (int i = 0; i < newN; i++) { for (int j = 0; j < n; j++) { sWKs[j, i] = cov.CrossCovariance(x, newX, j, i) / Math.Sqrt(sqrSigmaNoise); } } // for stddev alglib.ablas.rmatrixlefttrsm(n, newN, l, 0, 0, false, false, 0, ref sWKs, 0, 0); for (int i = 0; i < newN; i++) { var sumV = Util.ScalarProd(Util.GetCol(sWKs, i), Util.GetCol(sWKs, i)); kss[i] -= sumV; if (kss[i] < 0) kss[i] = 0; } return kss; } } }