#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Algorithms.DataAnalysis {
[StorableClass]
[Item(Name = "CovarianceSum",
Description = "Sum covariance function for Gaussian processes.")]
public class CovarianceSum : Item, ICovarianceFunction {
[Storable]
private ItemList terms;
[Storable]
private int numberOfVariables;
public ItemList Terms {
get { return terms; }
}
[StorableConstructor]
protected CovarianceSum(bool deserializing)
: base(deserializing) {
}
protected CovarianceSum(CovarianceSum original, Cloner cloner)
: base(original, cloner) {
this.terms = cloner.Clone(original.terms);
this.numberOfVariables = original.numberOfVariables;
AttachEventHandlers();
}
public CovarianceSum()
: base() {
this.terms = new ItemList();
AttachEventHandlers();
}
private void AttachEventHandlers() {
this.terms.CollectionReset += (sender, args) => ClearCache();
this.terms.ItemsAdded += (sender, args) => ClearCache();
this.terms.ItemsRemoved += (sender, args) => ClearCache();
this.terms.ItemsReplaced += (sender, args) => ClearCache();
this.terms.ItemsMoved += (sender, args) => ClearCache();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new CovarianceSum(this, cloner);
}
public int GetNumberOfParameters(int numberOfVariables) {
this.numberOfVariables = numberOfVariables;
return terms.Select(t => t.GetNumberOfParameters(numberOfVariables)).Sum();
}
public void SetParameter(double[] hyp) {
int offset = 0;
foreach (var t in terms) {
var numberOfParameters = t.GetNumberOfParameters(numberOfVariables);
t.SetParameter(hyp.Skip(offset).Take(numberOfParameters).ToArray());
offset += numberOfParameters;
}
}
public void SetData(double[,] x) {
SetData(x, x);
}
public void SetData(double[,] x, double[,] xt) {
foreach (var t in terms) {
t.SetData(x, xt);
}
}
public double GetCovariance(int i, int j) {
return terms.Select(t => t.GetCovariance(i, j)).Sum();
}
private Dictionary> cachedParameterMap;
public double GetGradient(int i, int j, int k) {
if (cachedParameterMap == null) {
CalculateParameterMap();
}
int ti = cachedParameterMap[k].Item1;
k = cachedParameterMap[k].Item2;
return terms[ti].GetGradient(i, j, k);
}
private void ClearCache() {
cachedParameterMap = null;
}
private void CalculateParameterMap() {
cachedParameterMap = new Dictionary>();
int k = 0;
for (int ti = 0; ti < terms.Count; ti++) {
for (int ti_k = 0; ti_k < terms[ti].GetNumberOfParameters(numberOfVariables); ti_k++) {
cachedParameterMap[k++] = Tuple.Create(ti, ti_k);
}
}
}
}
}