#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Algorithms.DataAnalysis { [StorableClass] [Item(Name = "CovarianceRQiso", Description = "Isotropic rational quadratic covariance function for Gaussian processes.")] public class CovarianceRQiso : Item, ICovarianceFunction { [Storable] private double sf2; public double Scale { get { return sf2; } } [Storable] private double inverseLength; public double InverseLength { get { return inverseLength; } } [Storable] private double alpha; public double Shape { get { return alpha; } } [StorableConstructor] protected CovarianceRQiso(bool deserializing) : base(deserializing) { } protected CovarianceRQiso(CovarianceRQiso original, Cloner cloner) : base(original, cloner) { this.sf2 = original.sf2; this.inverseLength = original.inverseLength; this.alpha = original.alpha; } public CovarianceRQiso() : base() { } public override IDeepCloneable Clone(Cloner cloner) { return new CovarianceRQiso(this, cloner); } public int GetNumberOfParameters(int numberOfVariables) { return 3; } public void SetParameter(double[] hyp) { if (hyp.Length != 3) throw new ArgumentException("CovarianceRQiso has three hyperparameters", "k"); this.inverseLength = 1.0 / Math.Exp(hyp[0]); this.sf2 = Math.Exp(2 * hyp[1]); this.alpha = Math.Exp(hyp[2]); } public double GetCovariance(double[,] x, int i, int j) { double d = i == j ? 0.0 : Util.SqrDist(x, i, j, inverseLength); return sf2 * Math.Pow(1 + 0.5 * d / alpha, -alpha); } public IEnumerable GetGradient(double[,] x, int i, int j) { double d = i == j ? 0.0 : Util.SqrDist(x, i, j, inverseLength); double b = 1 + 0.5 * d / alpha; yield return sf2 * Math.Pow(b, -alpha - 1) * d; yield return 2 * sf2 * Math.Pow(b, -alpha); yield return sf2 * Math.Pow(b, -alpha) * (0.5 * d / b - alpha * Math.Log(b)); } public double GetCrossCovariance(double[,] x, double[,] xt, int i, int j) { double d = Util.SqrDist(x, i, xt, j, inverseLength); return sf2 * Math.Pow(1 + 0.5 * d / alpha, -alpha); } } }