#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Algorithms.DataAnalysis {
[StorableClass]
[Item(Name = "CovarianceRQiso",
Description = "Isotropic rational quadratic covariance function for Gaussian processes.")]
public class CovarianceRQiso : Item, ICovarianceFunction {
[Storable]
private double sf2;
public double Scale { get { return sf2; } }
[Storable]
private double inverseLength;
public double InverseLength { get { return inverseLength; } }
[Storable]
private double alpha;
public double Shape { get { return alpha; } }
[StorableConstructor]
protected CovarianceRQiso(bool deserializing)
: base(deserializing) {
}
protected CovarianceRQiso(CovarianceRQiso original, Cloner cloner)
: base(original, cloner) {
this.sf2 = original.sf2;
this.inverseLength = original.inverseLength;
this.alpha = original.alpha;
}
public CovarianceRQiso()
: base() {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new CovarianceRQiso(this, cloner);
}
public int GetNumberOfParameters(int numberOfVariables) {
return 3;
}
public void SetParameter(double[] hyp) {
if (hyp.Length != 3) throw new ArgumentException("CovarianceRQiso has three hyperparameters", "k");
this.inverseLength = 1.0 / Math.Exp(hyp[0]);
this.sf2 = Math.Exp(2 * hyp[1]);
this.alpha = Math.Exp(hyp[2]);
}
public double GetCovariance(double[,] x, int i, int j) {
double d = i == j
? 0.0
: Util.SqrDist(x, i, j, inverseLength);
return sf2 * Math.Pow(1 + 0.5 * d / alpha, -alpha);
}
public IEnumerable GetGradient(double[,] x, int i, int j) {
double d = i == j
? 0.0
: Util.SqrDist(x, i, j, inverseLength);
double b = 1 + 0.5 * d / alpha;
yield return sf2 * Math.Pow(b, -alpha - 1) * d;
yield return 2 * sf2 * Math.Pow(b, -alpha);
yield return sf2 * Math.Pow(b, -alpha) * (0.5 * d / b - alpha * Math.Log(b));
}
public double GetCrossCovariance(double[,] x, double[,] xt, int i, int j) {
double d = Util.SqrDist(x, i, xt, j, inverseLength);
return sf2 * Math.Pow(1 + 0.5 * d / alpha, -alpha);
}
}
}