#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Algorithms.DataAnalysis { [StorableClass] [Item(Name = "CovarianceMaternIso", Description = "Matern covariance function for Gaussian processes.")] public sealed class CovarianceMaternIso : ParameterizedNamedItem, ICovarianceFunction { [Storable] private double inverseLength; [Storable] private readonly HyperParameter inverseLengthParameter; public IValueParameter InverseLengthParameter { get { return inverseLengthParameter; } } [Storable] private double sf2; [Storable] private readonly HyperParameter scaleParameter; public IValueParameter ScaleParameter { get { return scaleParameter; } } [Storable] private int d; [Storable] private readonly ConstrainedValueParameter dParameter; public IConstrainedValueParameter DParameter { get { return dParameter; } } [StorableConstructor] private CovarianceMaternIso(bool deserializing) : base(deserializing) { } private CovarianceMaternIso(CovarianceMaternIso original, Cloner cloner) : base(original, cloner) { this.scaleParameter = cloner.Clone(original.scaleParameter); this.sf2 = original.sf2; this.inverseLengthParameter = cloner.Clone(original.inverseLengthParameter); this.inverseLength = original.inverseLength; this.dParameter = cloner.Clone(original.dParameter); this.d = original.d; RegisterEvents(); } public CovarianceMaternIso() : base() { Name = ItemName; Description = ItemDescription; inverseLengthParameter = new HyperParameter("InverseLength", "The inverse length parameter of the isometric Matern covariance function."); scaleParameter = new HyperParameter("Scale", "The scale parameter of the isometric Matern covariance function."); var validDValues = new ItemSet(); validDValues.Add((IntValue)new IntValue(1).AsReadOnly()); validDValues.Add((IntValue)new IntValue(3).AsReadOnly()); validDValues.Add((IntValue)new IntValue(5).AsReadOnly()); dParameter = new ConstrainedValueParameter("D", "The d parameter (allowed values: 1, 3, or 5) of the isometric Matern covariance function.", validDValues, validDValues.First()); d = dParameter.Value.Value; Parameters.Add(inverseLengthParameter); Parameters.Add(scaleParameter); Parameters.Add(dParameter); RegisterEvents(); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { RegisterEvents(); } public override IDeepCloneable Clone(Cloner cloner) { return new CovarianceMaternIso(this, cloner); } // caching private void RegisterEvents() { Util.AttachValueChangeHandler(inverseLengthParameter, () => { inverseLength = inverseLengthParameter.Value.Value; }); Util.AttachValueChangeHandler(scaleParameter, () => { sf2 = scaleParameter.Value.Value; }); Util.AttachValueChangeHandler(dParameter, () => { d = dParameter.Value.Value; }); } public int GetNumberOfParameters(int numberOfVariables) { return (inverseLengthParameter.Fixed ? 0 : 1) + (scaleParameter.Fixed ? 0 : 1); } public void SetParameter(double[] hyp) { int i = 0; if (!inverseLengthParameter.Fixed) { inverseLengthParameter.SetValue(new DoubleValue(1.0 / Math.Exp(hyp[i]))); i++; } if (!scaleParameter.Fixed) { scaleParameter.SetValue(new DoubleValue(Math.Exp(2 * hyp[i]))); i++; } if (hyp.Length != i) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceMaternIso", "hyp"); } private double m(double t) { double f; switch (d) { case 1: { f = 1; break; } case 3: { f = 1 + t; break; } case 5: { f = 1 + t * (1 + t / 3.0); break; } default: throw new InvalidOperationException(); } return f * Math.Exp(-t); } private double dm(double t) { double df; switch (d) { case 1: { df = 1; break; } case 3: { df = t; break; } case 5: { df = t * (1 + t) / 3.0; break; } default: throw new InvalidOperationException(); } return df * t * Math.Exp(-t); } public double GetCovariance(double[,] x, int i, int j, IEnumerable columnIndices) { double dist = i == j ? 0.0 : Math.Sqrt(Util.SqrDist(x, i, j, Math.Sqrt(d) * inverseLength, columnIndices)); return sf2 * m(dist); } public IEnumerable GetGradient(double[,] x, int i, int j, IEnumerable columnIndices) { double dist = i == j ? 0.0 : Math.Sqrt(Util.SqrDist(x, i, j, Math.Sqrt(d) * inverseLength, columnIndices)); yield return sf2 * dm(dist); yield return 2 * sf2 * m(dist); } public double GetCrossCovariance(double[,] x, double[,] xt, int i, int j, IEnumerable columnIndices) { double dist = Math.Sqrt(Util.SqrDist(x, i, xt, j, Math.Sqrt(d) * inverseLength, columnIndices)); return sf2 * m(dist); } } }