[13439] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 | using System.Linq;
|
---|
| 22 | using System.Windows.Forms;
|
---|
| 23 | using HeuristicLab.Data;
|
---|
| 24 | using HeuristicLab.MainForm;
|
---|
| 25 | using HeuristicLab.Problems.DataAnalysis.Views;
|
---|
| 26 |
|
---|
| 27 | namespace HeuristicLab.Algorithms.DataAnalysis.Views {
|
---|
| 28 | [View("Estimated Values")]
|
---|
| 29 | [Content(typeof(GaussianProcessRegressionSolution), false)]
|
---|
| 30 | public partial class GaussianProcessRegressionSolutionEstimatedValuesView : RegressionSolutionEstimatedValuesView {
|
---|
| 31 | private const string ESTIMATEDVARIANCE_TRAINING_SERIES_NAME = "Estimated Variance (training)";
|
---|
| 32 | private const string ESTIMATEDVARIANCE_TEST_SERIES_NAME = "Estimated Variance (test)";
|
---|
| 33 |
|
---|
| 34 | public new GaussianProcessRegressionSolution Content {
|
---|
| 35 | get { return (GaussianProcessRegressionSolution)base.Content; }
|
---|
[13592] | 36 | set { base.Content = value; }
|
---|
[13439] | 37 | }
|
---|
| 38 |
|
---|
| 39 | public GaussianProcessRegressionSolutionEstimatedValuesView()
|
---|
| 40 | : base() {
|
---|
| 41 | InitializeComponent();
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 |
|
---|
[13592] | 45 | protected override StringMatrix CreateValueMatrix() {
|
---|
| 46 | var matrix = base.CreateValueMatrix();
|
---|
[13439] | 47 |
|
---|
[13592] | 48 | var columnNames = matrix.ColumnNames.Concat(new[] { ESTIMATEDVARIANCE_TRAINING_SERIES_NAME, ESTIMATEDVARIANCE_TEST_SERIES_NAME }).ToList();
|
---|
| 49 | ((IStringConvertibleMatrix)matrix).Columns += 2;
|
---|
| 50 | matrix.ColumnNames = columnNames;
|
---|
[13439] | 51 |
|
---|
[13592] | 52 | var trainingRows = Content.ProblemData.TrainingIndices;
|
---|
| 53 | var testRows = Content.ProblemData.TestIndices;
|
---|
[13439] | 54 |
|
---|
[13592] | 55 | var estimated_var_training = Content.GetEstimatedVariance(trainingRows).GetEnumerator();
|
---|
| 56 | var estimated_var_test = Content.GetEstimatedVariance(testRows).GetEnumerator();
|
---|
[13439] | 57 |
|
---|
[13592] | 58 | foreach (var row in Content.ProblemData.TrainingIndices) {
|
---|
| 59 | estimated_var_training.MoveNext();
|
---|
| 60 | matrix[row, 7] = estimated_var_training.Current.ToString();
|
---|
| 61 | }
|
---|
[13439] | 62 |
|
---|
[13592] | 63 | foreach (var row in Content.ProblemData.TestIndices) {
|
---|
| 64 | estimated_var_test.MoveNext();
|
---|
| 65 | matrix[row, 8] = estimated_var_test.Current.ToString();
|
---|
| 66 | }
|
---|
[13439] | 67 |
|
---|
| 68 |
|
---|
[13592] | 69 | return matrix;
|
---|
[13439] | 70 | }
|
---|
| 71 | }
|
---|
| 72 | }
|
---|