#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Optimization.Operators;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Selection;
namespace HeuristicLab.Algorithms.ALPS {
[Item("AlpsOffspringSelectionGeneticAlgorithmMainLoop", "An ALPS offspring selection genetic algorithm main loop operator.")]
[StorableClass]
public sealed class AlpsOffspringSelectionGeneticAlgorithmMainLoop : AlgorithmOperator {
#region Parameter Properties
public IValueLookupParameter GlobalRandomParameter {
get { return (IValueLookupParameter)Parameters["GlobalRandom"]; }
}
public IValueLookupParameter LocalRandomParameter {
get { return (IValueLookupParameter)Parameters["LocalRandom"]; }
}
public IValueLookupParameter EvaluatorParameter {
get { return (IValueLookupParameter)Parameters["Evaluator"]; }
}
public IValueLookupParameter EvaluatedSolutionsParameter {
get { return (IValueLookupParameter)Parameters["EvaluatedSolutions"]; }
}
public IScopeTreeLookupParameter QualityParameter {
get { return (IScopeTreeLookupParameter)Parameters["Quality"]; }
}
public IValueLookupParameter MaximizationParameter {
get { return (IValueLookupParameter)Parameters["Maximization"]; }
}
public ILookupParameter AnalyzerParameter {
get { return (ILookupParameter)Parameters["Analyzer"]; }
}
public ILookupParameter LayerAnalyzerParameter {
get { return (ILookupParameter)Parameters["LayerAnalyzer"]; }
}
public IValueLookupParameter NumberOfLayersParameter {
get { return (IValueLookupParameter)Parameters["NumberOfLayers"]; }
}
public IValueLookupParameter PopulationSizeParameter {
get { return (IValueLookupParameter)Parameters["PopulationSize"]; }
}
public ILookupParameter CurrentPopulationSizeParameter {
get { return (ILookupParameter)Parameters["CurrentPopulationSize"]; }
}
public IValueLookupParameter SelectorParameter {
get { return (IValueLookupParameter)Parameters["Selector"]; }
}
public IValueLookupParameter CrossoverParameter {
get { return (IValueLookupParameter)Parameters["Crossover"]; }
}
public IValueLookupParameter MutatorParameter {
get { return (IValueLookupParameter)Parameters["Mutator"]; }
}
public IValueLookupParameter MutationProbabilityParameter {
get { return (IValueLookupParameter)Parameters["MutationProbability"]; }
}
public IValueLookupParameter ElitesParameter {
get { return (IValueLookupParameter)Parameters["Elites"]; }
}
public IValueLookupParameter ReevaluateElitesParameter {
get { return (IValueLookupParameter)Parameters["ReevaluateElites"]; }
}
public IValueLookupParameter SuccessRatioParameter {
get { return (IValueLookupParameter)Parameters["SuccessRatio"]; }
}
public ILookupParameter ComparisonFactorParameter {
get { return (ILookupParameter)Parameters["ComparisonFactor"]; }
}
public IValueLookupParameter MaximumSelectionPressureParameter {
get { return (IValueLookupParameter)Parameters["MaximumSelectionPressure"]; }
}
public IValueLookupParameter OffspringSelectionBeforeMutationParameter {
get { return (IValueLookupParameter)Parameters["OffspringSelectionBeforeMutation"]; }
}
public IValueLookupParameter FillPopulationWithParentsParameter {
get { return (IValueLookupParameter)Parameters["FillPopulationWithParents"]; }
}
public IScopeTreeLookupParameter AgeParameter {
get { return (IScopeTreeLookupParameter)Parameters["Age"]; }
}
public IValueLookupParameter AgeGapParameter {
get { return (IValueLookupParameter)Parameters["AgeGap"]; }
}
public IValueLookupParameter AgeInheritanceParameter {
get { return (IValueLookupParameter)Parameters["AgeInheritance"]; }
}
public IValueLookupParameter AgeLimitsParameter {
get { return (IValueLookupParameter)Parameters["AgeLimits"]; }
}
public IValueLookupParameter MatingPoolRangeParameter {
get { return (IValueLookupParameter)Parameters["MatingPoolRange"]; }
}
public IValueLookupParameter ReduceToPopulationSizeParameter {
get { return (IValueLookupParameter)Parameters["ReduceToPopulationSize"]; }
}
public IValueLookupParameter TerminatorParameter {
get { return (IValueLookupParameter)Parameters["Terminator"]; }
}
#endregion
[StorableConstructor]
private AlpsOffspringSelectionGeneticAlgorithmMainLoop(bool deserializing)
: base(deserializing) { }
private AlpsOffspringSelectionGeneticAlgorithmMainLoop(AlpsOffspringSelectionGeneticAlgorithmMainLoop original, Cloner cloner)
: base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new AlpsOffspringSelectionGeneticAlgorithmMainLoop(this, cloner);
}
public AlpsOffspringSelectionGeneticAlgorithmMainLoop()
: base() {
Parameters.Add(new ValueLookupParameter("GlobalRandom", "A pseudo random number generator."));
Parameters.Add(new ValueLookupParameter("LocalRandom", "A pseudo random number generator."));
Parameters.Add(new ValueLookupParameter("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
Parameters.Add(new ValueLookupParameter("EvaluatedSolutions", "The number of times solutions have been evaluated."));
Parameters.Add(new ScopeTreeLookupParameter("Quality", "The value which represents the quality of a solution."));
Parameters.Add(new ValueLookupParameter("Maximization", "True if the problem is a maximization problem, otherwise false."));
Parameters.Add(new ValueLookupParameter("Analyzer", "The operator used to analyze all individuals from all layers combined."));
Parameters.Add(new ValueLookupParameter("LayerAnalyzer", "The operator used to analyze each layer."));
Parameters.Add(new ValueLookupParameter("NumberOfLayers", "The number of layers."));
Parameters.Add(new ValueLookupParameter("PopulationSize", "The size of the population of solutions in each layer."));
Parameters.Add(new LookupParameter("CurrentPopulationSize", "The current size of the population."));
Parameters.Add(new ValueLookupParameter("Selector", "The operator used to select solutions for reproduction."));
Parameters.Add(new ValueLookupParameter("Crossover", "The operator used to cross solutions."));
Parameters.Add(new ValueLookupParameter("Mutator", "The operator used to mutate solutions."));
Parameters.Add(new ValueLookupParameter("MutationProbability", "The probability that the mutation operator is applied on a solution."));
Parameters.Add(new ValueLookupParameter("Elites", "The numer of elite solutions which are kept in each generation."));
Parameters.Add(new ValueLookupParameter("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
Parameters.Add(new ValueLookupParameter("SuccessRatio", "The ratio of successful to total children that should be achieved."));
Parameters.Add(new ValueLookupParameter("ComparisonFactor", "The comparison factor is used to determine whether the offspring should be compared to the better parent, the worse parent or a quality value linearly interpolated between them. It is in the range [0;1]."));
Parameters.Add(new ValueLookupParameter("MaximumSelectionPressure", "The maximum selection pressure that terminates the algorithm."));
Parameters.Add(new ValueLookupParameter("OffspringSelectionBeforeMutation", "True if the offspring selection step should be applied before mutation, false if it should be applied after mutation."));
Parameters.Add(new ValueLookupParameter("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded."));
Parameters.Add(new ScopeTreeLookupParameter("Age", "The age of individuals."));
Parameters.Add(new ValueLookupParameter("AgeGap", "The frequency of reseeding the lowest layer and scaling factor for the age-limits for the layers."));
Parameters.Add(new ValueLookupParameter("AgeInheritance", "A weight that determines the age of a child after crossover based on the older (1.0) and younger (0.0) parent."));
Parameters.Add(new ValueLookupParameter("AgeLimits", "The maximum age an individual is allowed to reach in a certain layer."));
Parameters.Add(new ValueLookupParameter("MatingPoolRange", "The range of sub - populations used for creating a mating pool. (1 = current + previous sub-population)"));
Parameters.Add(new ValueLookupParameter("ReduceToPopulationSize", "Reduce the CurrentPopulationSize after elder migration to PopulationSize"));
Parameters.Add(new ValueLookupParameter("Terminator", "The termination criteria that defines if the algorithm should continue or stop"));
var variableCreator = new VariableCreator() { Name = "Initialize" };
var initLayerAnalyzerProcessor = new SubScopesProcessor();
var layerVariableCreator = new VariableCreator() { Name = "Initialize Layer" };
var initLayerAnalyzerPlaceholder = new Placeholder() { Name = "LayerAnalyzer (Placeholder)" };
var layerResultCollector = new ResultsCollector() { Name = "Collect layer results" };
var initAnalyzerPlaceholder = new Placeholder() { Name = "Analyzer (Placeholder)" };
var resultsCollector = new ResultsCollector();
var matingPoolCreator = new MatingPoolCreator() { Name = "Create Mating Pools" };
var matingPoolProcessor = new UniformSubScopesProcessor() { Name = "Process Mating Pools" };
var initializeLayer = new Assigner() { Name = "Reset LayerEvaluatedSolutions" };
var mainOperator = new AlpsOffspringSelectionGeneticAlgorithmMainOperator();
var generationsIcrementor = new IntCounter() { Name = "Increment Generations" };
var evaluatedSolutionsReducer = new DataReducer() { Name = "Increment EvaluatedSolutions" };
var eldersEmigrator = CreateEldersEmigrator();
var layerOpener = CreateLayerOpener();
var layerReseeder = CreateReseeder();
var layerAnalyzerProcessor = new UniformSubScopesProcessor();
var layerAnalyzerPlaceholder = new Placeholder() { Name = "LayerAnalyzer (Placeholder)" };
var analyzerPlaceholder = new Placeholder() { Name = "Analyzer (Placeholder)" };
var termination = new TerminationOperator();
OperatorGraph.InitialOperator = variableCreator;
variableCreator.CollectedValues.Add(new ValueParameter("Generations", new IntValue(0)));
variableCreator.CollectedValues.Add(new ValueParameter("OpenLayers", new IntValue(1)));
variableCreator.Successor = initLayerAnalyzerProcessor;
initLayerAnalyzerProcessor.Operators.Add(layerVariableCreator);
initLayerAnalyzerProcessor.Successor = initAnalyzerPlaceholder;
layerVariableCreator.CollectedValues.Add(new ValueParameter("Layer", new IntValue(0)));
layerVariableCreator.CollectedValues.Add(new ValueParameter("LayerResults"));
layerVariableCreator.CollectedValues.Add(new ValueParameter("SelectionPressure", new DoubleValue(0)));
layerVariableCreator.CollectedValues.Add(new ValueParameter("CurrentSuccessRatio", new DoubleValue(0)));
layerVariableCreator.Successor = initLayerAnalyzerPlaceholder;
initLayerAnalyzerPlaceholder.OperatorParameter.ActualName = LayerAnalyzerParameter.Name;
initLayerAnalyzerPlaceholder.Successor = layerResultCollector;
layerResultCollector.ResultsParameter.ActualName = "LayerResults";
layerResultCollector.CollectedValues.Add(new LookupParameter("Current Selection Pressure", "Displays the rising selection pressure during a generation.", "SelectionPressure"));
layerResultCollector.CollectedValues.Add(new LookupParameter("Current Success Ratio", "Indicates how many successful children were already found during a generation (relative to the population size).", "CurrentSuccessRatio"));
layerResultCollector.Successor = null;
initAnalyzerPlaceholder.OperatorParameter.ActualName = AnalyzerParameter.Name;
initAnalyzerPlaceholder.Successor = resultsCollector;
resultsCollector.CollectedValues.Add(new LookupParameter("Generations"));
resultsCollector.CollectedValues.Add(new ScopeTreeLookupParameter("LayerResults", "Result set for each Layer", "LayerResults"));
resultsCollector.CollectedValues.Add(new LookupParameter("OpenLayers"));
resultsCollector.CopyValue = new BoolValue(false);
resultsCollector.Successor = matingPoolCreator;
matingPoolCreator.MatingPoolRangeParameter.Value = null;
matingPoolCreator.MatingPoolRangeParameter.ActualName = MatingPoolRangeParameter.Name;
matingPoolCreator.Successor = matingPoolProcessor;
matingPoolProcessor.Parallel.Value = true;
matingPoolProcessor.Operator = initializeLayer;
matingPoolProcessor.Successor = generationsIcrementor;
initializeLayer.LeftSideParameter.ActualName = "LayerEvaluatedSolutions";
initializeLayer.RightSideParameter.Value = new IntValue(0);
initializeLayer.Successor = mainOperator;
mainOperator.RandomParameter.ActualName = LocalRandomParameter.Name;
mainOperator.EvaluatorParameter.ActualName = EvaluatorParameter.Name;
mainOperator.EvaluatedSolutionsParameter.ActualName = "LayerEvaluatedSolutions";
mainOperator.QualityParameter.ActualName = QualityParameter.Name;
mainOperator.MaximizationParameter.ActualName = MaximizationParameter.Name;
mainOperator.PopulationSizeParameter.ActualName = PopulationSizeParameter.Name;
mainOperator.SelectorParameter.ActualName = SelectorParameter.Name;
mainOperator.CrossoverParameter.ActualName = CrossoverParameter.Name;
mainOperator.MutatorParameter.ActualName = MutatorParameter.ActualName;
mainOperator.MutationProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
mainOperator.ElitesParameter.ActualName = ElitesParameter.Name;
mainOperator.ReevaluateElitesParameter.ActualName = ReevaluateElitesParameter.Name;
mainOperator.ComparisonFactorParameter.ActualName = ComparisonFactorParameter.Name;
mainOperator.SuccessRatioParameter.ActualName = SuccessRatioParameter.Name;
mainOperator.CurrentSuccessRatioParameter.ActualName = "CurrentSuccessRatio";
mainOperator.SelectionPressureParameter.ActualName = "SelectionPressure";
mainOperator.MaximumSelectionPressureParameter.ActualName = MaximumSelectionPressureParameter.Name;
mainOperator.OffspringSelectionBeforeMutationParameter.ActualName = OffspringSelectionBeforeMutationParameter.Name;
mainOperator.FillPopulationWithParentsParameter.ActualName = FillPopulationWithParentsParameter.Name;
mainOperator.AgeParameter.ActualName = AgeParameter.Name;
mainOperator.AgeInheritanceParameter.ActualName = AgeInheritanceParameter.Name;
mainOperator.AgeIncrementParameter.Value = new DoubleValue(1.0);
mainOperator.Successor = null;
generationsIcrementor.ValueParameter.ActualName = "Generations";
generationsIcrementor.Increment = new IntValue(1);
generationsIcrementor.Successor = evaluatedSolutionsReducer;
evaluatedSolutionsReducer.ParameterToReduce.ActualName = "LayerEvaluatedSolutions";
evaluatedSolutionsReducer.TargetParameter.ActualName = EvaluatedSolutionsParameter.Name;
evaluatedSolutionsReducer.ReductionOperation.Value = new ReductionOperation(ReductionOperations.Sum);
evaluatedSolutionsReducer.TargetOperation.Value = new ReductionOperation(ReductionOperations.Sum);
evaluatedSolutionsReducer.Successor = eldersEmigrator;
eldersEmigrator.Successor = layerOpener;
layerOpener.Successor = layerReseeder;
layerReseeder.Successor = layerAnalyzerProcessor;
layerAnalyzerProcessor.Operator = layerAnalyzerPlaceholder;
layerAnalyzerProcessor.Successor = analyzerPlaceholder;
layerAnalyzerPlaceholder.OperatorParameter.ActualName = LayerAnalyzerParameter.Name;
analyzerPlaceholder.OperatorParameter.ActualName = AnalyzerParameter.Name;
analyzerPlaceholder.Successor = termination;
termination.TerminatorParameter.ActualName = TerminatorParameter.Name;
termination.ContinueBranch = matingPoolCreator;
}
private CombinedOperator CreateEldersEmigrator() {
var eldersEmigrator = new CombinedOperator() { Name = "Emigrate Elders" };
var selectorProsessor = new UniformSubScopesProcessor();
var eldersSelector = new EldersSelector();
var shiftToRightMigrator = new UnidirectionalRingMigrator() { Name = "Shift elders to next layer" };
var mergingProsessor = new UniformSubScopesProcessor();
var mergingReducer = new MergingReducer();
var subScopesCounter = new SubScopesCounter();
var reduceToPopulationSizeBranch = new ConditionalBranch() { Name = "ReduceToPopulationSize?" };
var countCalculator = new ExpressionCalculator() { Name = "CurrentPopulationSize = Min(CurrentPopulationSize, PopulationSize)" };
var bestSelector = new BestSelector();
var rightReducer = new RightReducer();
eldersEmigrator.OperatorGraph.InitialOperator = selectorProsessor;
selectorProsessor.Operator = eldersSelector;
selectorProsessor.Successor = shiftToRightMigrator;
eldersSelector.AgeParameter.ActualName = AgeParameter.Name;
eldersSelector.AgeLimitsParameter.ActualName = AgeLimitsParameter.Name;
eldersSelector.NumberOfLayersParameter.ActualName = NumberOfLayersParameter.Name;
eldersSelector.LayerParameter.ActualName = "Layer";
eldersSelector.Successor = null;
shiftToRightMigrator.ClockwiseMigrationParameter.Value = new BoolValue(true);
shiftToRightMigrator.Successor = mergingProsessor;
mergingProsessor.Operator = mergingReducer;
mergingReducer.Successor = subScopesCounter;
subScopesCounter.ValueParameter.ActualName = CurrentPopulationSizeParameter.Name;
subScopesCounter.AccumulateParameter.Value = new BoolValue(false);
subScopesCounter.Successor = reduceToPopulationSizeBranch;
reduceToPopulationSizeBranch.ConditionParameter.ActualName = ReduceToPopulationSizeParameter.Name;
reduceToPopulationSizeBranch.TrueBranch = countCalculator;
countCalculator.CollectedValues.Add(new LookupParameter(PopulationSizeParameter.Name));
countCalculator.CollectedValues.Add(new LookupParameter(CurrentPopulationSizeParameter.Name));
countCalculator.ExpressionParameter.Value = new StringValue("CurrentPopulationSize PopulationSize CurrentPopulationSize PopulationSize < if toint");
countCalculator.ExpressionResultParameter.ActualName = CurrentPopulationSizeParameter.Name;
countCalculator.Successor = bestSelector;
bestSelector.NumberOfSelectedSubScopesParameter.ActualName = CurrentPopulationSizeParameter.Name;
bestSelector.CopySelected = new BoolValue(false);
bestSelector.Successor = rightReducer;
return eldersEmigrator;
}
private CombinedOperator CreateLayerOpener() {
var layerOpener = new CombinedOperator() { Name = "Open new Layer if needed" };
var maxLayerReached = new Comparator() { Name = "MaxLayersReached = OpenLayers >= NumberOfLayers" };
var maxLayerReachedBranch = new ConditionalBranch() { Name = "MaxLayersReached?" };
var openNewLayerCalculator = new ExpressionCalculator() { Name = "OpenNewLayer = Generations >= AgeLimits[OpenLayers - 1]" };
var openNewLayerBranch = new ConditionalBranch() { Name = "OpenNewLayer?" };
var layerCreator = new LastLayerCloner() { Name = "Create Layer" };
var updateLayerNumber = new Assigner() { Name = "Layer = OpenLayers" };
var historyWiper = new ResultsHistoryWiper() { Name = "Clear History in Results" };
var createChildrenViaCrossover = new AlpsOffspringSelectionGeneticAlgorithmMainOperator();
var incrEvaluatedSolutionsForNewLayer = new SubScopesCounter() { Name = "Update EvaluatedSolutions" };
var incrOpenLayers = new IntCounter() { Name = "Incr. OpenLayers" };
var newLayerResultsCollector = new ResultsCollector() { Name = "Collect new Layer Results" };
layerOpener.OperatorGraph.InitialOperator = maxLayerReached;
maxLayerReached.LeftSideParameter.ActualName = "OpenLayers";
maxLayerReached.RightSideParameter.ActualName = NumberOfLayersParameter.Name;
maxLayerReached.ResultParameter.ActualName = "MaxLayerReached";
maxLayerReached.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
maxLayerReached.Successor = maxLayerReachedBranch;
maxLayerReachedBranch.ConditionParameter.ActualName = "MaxLayerReached";
maxLayerReachedBranch.FalseBranch = openNewLayerCalculator;
openNewLayerCalculator.CollectedValues.Add(new LookupParameter(AgeLimitsParameter.Name));
openNewLayerCalculator.CollectedValues.Add(new LookupParameter("Generations"));
openNewLayerCalculator.CollectedValues.Add(new LookupParameter(NumberOfLayersParameter.Name));
openNewLayerCalculator.CollectedValues.Add(new LookupParameter("OpenLayers"));
openNewLayerCalculator.ExpressionResultParameter.ActualName = "OpenNewLayer";
openNewLayerCalculator.ExpressionParameter.Value = new StringValue("Generations 1 + AgeLimits OpenLayers 1 - [] >");
openNewLayerCalculator.Successor = openNewLayerBranch;
openNewLayerBranch.ConditionParameter.ActualName = "OpenNewLayer";
openNewLayerBranch.TrueBranch = layerCreator;
layerCreator.NewLayerOperator = updateLayerNumber;
layerCreator.Successor = incrOpenLayers;
updateLayerNumber.LeftSideParameter.ActualName = "Layer";
updateLayerNumber.RightSideParameter.ActualName = "OpenLayers";
updateLayerNumber.Successor = historyWiper;
historyWiper.ResultsParameter.ActualName = "LayerResults";
historyWiper.Successor = createChildrenViaCrossover;
// Maybe use only crossover and no elitism instead of "default operator"
createChildrenViaCrossover.RandomParameter.ActualName = LocalRandomParameter.Name;
createChildrenViaCrossover.EvaluatorParameter.ActualName = EvaluatorParameter.Name;
createChildrenViaCrossover.EvaluatedSolutionsParameter.ActualName = "LayerEvaluatedSolutions";
createChildrenViaCrossover.QualityParameter.ActualName = QualityParameter.Name;
createChildrenViaCrossover.MaximizationParameter.ActualName = MaximizationParameter.Name;
createChildrenViaCrossover.PopulationSizeParameter.ActualName = PopulationSizeParameter.Name;
createChildrenViaCrossover.SelectorParameter.ActualName = SelectorParameter.Name;
createChildrenViaCrossover.CrossoverParameter.ActualName = CrossoverParameter.Name;
createChildrenViaCrossover.MutatorParameter.ActualName = MutatorParameter.ActualName;
createChildrenViaCrossover.MutationProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
createChildrenViaCrossover.ElitesParameter.ActualName = ElitesParameter.Name;
createChildrenViaCrossover.ReevaluateElitesParameter.ActualName = ReevaluateElitesParameter.Name;
createChildrenViaCrossover.ComparisonFactorParameter.ActualName = ComparisonFactorParameter.Name;
createChildrenViaCrossover.SuccessRatioParameter.ActualName = SuccessRatioParameter.Name;
createChildrenViaCrossover.CurrentSuccessRatioParameter.ActualName = "CurrentSuccessRatio";
createChildrenViaCrossover.SelectionPressureParameter.ActualName = "SelectionPressure";
createChildrenViaCrossover.MaximumSelectionPressureParameter.ActualName = MaximumSelectionPressureParameter.Name;
createChildrenViaCrossover.OffspringSelectionBeforeMutationParameter.ActualName = OffspringSelectionBeforeMutationParameter.Name;
createChildrenViaCrossover.FillPopulationWithParentsParameter.ActualName = FillPopulationWithParentsParameter.Name;
createChildrenViaCrossover.AgeParameter.ActualName = AgeParameter.Name;
createChildrenViaCrossover.AgeInheritanceParameter.ActualName = AgeInheritanceParameter.Name;
createChildrenViaCrossover.AgeIncrementParameter.Value = new DoubleValue(0.0);
createChildrenViaCrossover.Successor = incrEvaluatedSolutionsForNewLayer;
incrEvaluatedSolutionsForNewLayer.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
incrEvaluatedSolutionsForNewLayer.AccumulateParameter.Value = new BoolValue(true);
incrOpenLayers.ValueParameter.ActualName = "OpenLayers";
incrOpenLayers.Increment = new IntValue(1);
incrOpenLayers.Successor = newLayerResultsCollector;
newLayerResultsCollector.CollectedValues.Add(new ScopeTreeLookupParameter("LayerResults", "Result set for each layer", "LayerResults"));
newLayerResultsCollector.CopyValue = new BoolValue(false);
newLayerResultsCollector.Successor = null;
return layerOpener;
}
private CombinedOperator CreateReseeder() {
var reseeder = new CombinedOperator() { Name = "Reseed Layer Zero if needed" };
var reseedingController = new ReseedingController() { Name = "Reseeding needed (Generation % AgeGap == 0)?" };
var removeIndividuals = new SubScopesRemover();
var createIndividuals = new SolutionsCreator();
var initializeAgeProsessor = new UniformSubScopesProcessor();
var initializeAge = new VariableCreator() { Name = "Initialize Age" };
var incrEvaluatedSolutionsAfterReseeding = new SubScopesCounter() { Name = "Update EvaluatedSolutions" };
reseeder.OperatorGraph.InitialOperator = reseedingController;
reseedingController.GenerationsParameter.ActualName = "Generations";
reseedingController.AgeGapParameter.ActualName = AgeGapParameter.Name;
reseedingController.FirstLayerOperator = removeIndividuals;
reseedingController.Successor = null;
removeIndividuals.Successor = createIndividuals;
createIndividuals.NumberOfSolutionsParameter.ActualName = PopulationSizeParameter.Name;
createIndividuals.Successor = initializeAgeProsessor;
initializeAgeProsessor.Operator = initializeAge;
initializeAgeProsessor.Successor = incrEvaluatedSolutionsAfterReseeding;
initializeAge.CollectedValues.Add(new ValueParameter(AgeParameter.Name, new DoubleValue(0)));
incrEvaluatedSolutionsAfterReseeding.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
incrEvaluatedSolutionsAfterReseeding.AccumulateParameter.Value = new BoolValue(true);
return reseeder;
}
}
}