#region License Information /* HeuristicLab * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using Microsoft.VisualStudio.TestTools.UnitTesting; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Tests { [TestClass] public class DerivativeTest { [TestMethod] [TestCategory("Problems.DataAnalysis.Symbolic")] [TestProperty("Time", "short")] public void DeriveExpressions() { var formatter = new InfixExpressionFormatter(); Assert.AreEqual("0", Derive("", "x")); Assert.AreEqual("1", Derive("x", "x")); Assert.AreEqual("10", Derive("*x", "x")); Assert.AreEqual("10", Derive("x*", "x")); Assert.AreEqual("2*'x'", Derive("x*x", "x")); Assert.AreEqual("'x' * 'x' * 2 + 'x' * 'x'", Derive("x*x*x", "x")); // simplifier does not merge (x*x)*2 + x*x to 3*x*x Assert.AreEqual("0", Derive("*x", "y")); Assert.AreEqual("20", Derive("*x+*y", "y")); Assert.AreEqual("6", Derive("**x", "x")); Assert.AreEqual("10*'y'", Derive("*x*y+*y", "x")); Assert.AreEqual("1 * -1 / SQR('x')", Derive("1/x", "x")); Assert.AreEqual("-1*'y' / SQR('x')", Derive("y/x", "x")); Assert.AreEqual("('a' + 'b') * (-2*'x' + -1) / SQR('x' + 'x' * 'x')", Derive("(a+b)/(x+x*x)", "x")); Assert.AreEqual("('a' + 'b') * (-2*'x' + -1) / SQR('x' + SQR('x'))", Derive("(a+b)/(x+SQR(x))", "x")); Assert.AreEqual("EXP('x')", Derive("exp(x)", "x")); Assert.AreEqual("EXP(3*'x') * 3", Derive("exp(*x)", "x")); Assert.AreEqual("1 / 'x'", Derive("log(x)", "x")); Assert.AreEqual("1 / 'x'", Derive("log(*x)", "x")); // 3 * 1/(3*x) Assert.AreEqual("1 / ('x' + 0.333333333333333*'y')", Derive("log(*x+y)", "x")); // simplifier does not try to keep fractions Assert.AreEqual("1 / (SQRT(3*'x' + 'y') * 0.666666666666667)", Derive("sqrt(*x+y)", "x")); // 3 / (2 * sqrt(3*x+y)) = 1 / ((2/3) * sqrt(3*x+y)) Assert.AreEqual("COS(3*'x') * 3", Derive("sin(*x)", "x")); Assert.AreEqual("SIN(3*'x') * -3", Derive("cos(*x)", "x")); Assert.AreEqual("1 / (SQR(COS(3*'x')) * 0.333333333333333)", Derive("tan(*x)", "x")); // diff(tan(f(x)), x) = 1.0 / cos²(f(x)), simplifier puts constant factor into the denominator Assert.AreEqual("9*'x' / ABS(3*'x')", Derive("abs(*x)", "x")); Assert.AreEqual("SQR('x') * 3", Derive("cube(x)", "x")); Assert.AreEqual("1 / (SQR(CUBEROOT('x')) * 3)", Derive("cuberoot(x)", "x")); Assert.AreEqual("0", Derive("(a+b)/(x+SQR(x))", "y")); // df(a,b,x) / dy = 0 Assert.AreEqual("'a' * 'b' * 'c'", Derive("a*b*c*d", "d")); Assert.AreEqual("'b' * 'c' * -1*'a' / (SQR('b') * SQR('c') * SQR('d'))", Derive("a/b/c/d", "d")); // TODO simplifier should be able to simplify this Assert.AreEqual("'x' * (SQR(TANH(SQR('x'))) * -1 + 1) * 2", Derive("tanh(sqr(x))", "x")); // (2*'x'*(1 - SQR(TANH(SQR('x')))) { // special case: Inv(x) using only one argument to the division symbol // f(x) = 1/x var root = new ProgramRootSymbol().CreateTreeNode(); var start = new StartSymbol().CreateTreeNode(); var div = new Division().CreateTreeNode(); var varNode = (VariableTreeNode)(new Variable().CreateTreeNode()); varNode.Weight = 1.0; varNode.VariableName = "x"; div.AddSubtree(varNode); start.AddSubtree(div); root.AddSubtree(start); var t = new SymbolicExpressionTree(root); Assert.AreEqual("1 / (SQR('x') * -1)", formatter.Format(DerivativeCalculator.Derive(t, "x"))); } { // special case: multiplication with only one argument var root = new ProgramRootSymbol().CreateTreeNode(); var start = new StartSymbol().CreateTreeNode(); var mul = new Multiplication().CreateTreeNode(); var varNode = (VariableTreeNode)(new Variable().CreateTreeNode()); varNode.Weight = 3.0; varNode.VariableName = "x"; mul.AddSubtree(varNode); start.AddSubtree(mul); root.AddSubtree(start); var t = new SymbolicExpressionTree(root); Assert.AreEqual("3", formatter.Format(DerivativeCalculator.Derive(t, "x"))); } { // division with multiple arguments // div(x, y, z) is interpreted as (x / y) / z var root = new ProgramRootSymbol().CreateTreeNode(); var start = new StartSymbol().CreateTreeNode(); var div = new Division().CreateTreeNode(); var varNode1 = (VariableTreeNode)(new Variable().CreateTreeNode()); varNode1.Weight = 3.0; varNode1.VariableName = "x"; var varNode2 = (VariableTreeNode)(new Variable().CreateTreeNode()); varNode2.Weight = 4.0; varNode2.VariableName = "y"; var varNode3 = (VariableTreeNode)(new Variable().CreateTreeNode()); varNode3.Weight = 5.0; varNode3.VariableName = "z"; div.AddSubtree(varNode1); div.AddSubtree(varNode2); div.AddSubtree(varNode3); start.AddSubtree(div); root.AddSubtree(start); var t = new SymbolicExpressionTree(root); Assert.AreEqual("'y' * 'z' * 60 / (SQR('y') * SQR('z') * 400)", // actually 3 / (4y 5z) but simplifier is not smart enough to cancel numerator and denominator // 60 y z / y² z² 20² == 6 / y z 40 == 3 / y z 20 formatter.Format(DerivativeCalculator.Derive(t, "x"))); Assert.AreEqual("'x' * 'z' * -60 / (SQR('y') * SQR('z') * 400)", // actually 3x * -(4 5 z) / (4y 5z)² = -3x / (20 y² z) // -3 4 5 x z / 4² y² 5² z² = -60 x z / 20² z² y² == -60 x z / y² z² 20² formatter.Format(DerivativeCalculator.Derive(t, "y"))); Assert.AreEqual("'x' * 'y' * -60 / (SQR('y') * SQR('z') * 400)", formatter.Format(DerivativeCalculator.Derive(t, "z"))); } } private string Derive(string expr, string variable) { var parser = new InfixExpressionParser(); var formatter = new InfixExpressionFormatter(); var t = parser.Parse(expr); var tPrime = DerivativeCalculator.Derive(t, variable); return formatter.Format(tPrime); } } }