#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.IO;
using System.Linq;
using HEAL.Attic;
using HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Problems.Instances.DataAnalysis;
using HeuristicLab.Selection;
using Microsoft.VisualStudio.TestTools.UnitTesting;
namespace HeuristicLab.Tests {
[TestClass]
public class GeSymbolicRegressionSampleTest {
private static readonly ProtoBufSerializer serializer = new ProtoBufSerializer();
#region artificial ant
private const string GeArtificialAntSampleFileName = "GE_ArtificialAnt";
[TestMethod]
[TestCategory("Samples.Create")]
[TestProperty("Time", "medium")]
public void CreateGeArtificialAntSampleTest() {
var geaa = CreateGeArtificialAntSample();
string path = Path.Combine(SamplesUtils.SamplesDirectory, GeArtificialAntSampleFileName + SamplesUtils.SampleFileExtension);
serializer.Serialize(geaa, path);
}
[TestMethod]
[TestCategory("Samples.Execute")]
[TestProperty("Time", "long")]
public void RunGeArtificalAntSampleTest() {
var ga = CreateGeArtificialAntSample();
ga.SetSeedRandomly.Value = false;
SamplesUtils.RunAlgorithm(ga);
}
public OffspringSelectionGeneticAlgorithm CreateGeArtificialAntSample() {
OffspringSelectionGeneticAlgorithm ga = new OffspringSelectionGeneticAlgorithm();
#region Problem Configuration
var problem = new HeuristicLab.Problems.GrammaticalEvolution.GEArtificialAntProblem();
#endregion
#region Algorithm Configuration
ga.Name = "Grammatical Evolution - Artificial Ant (SantaFe)";
ga.Description = "Grammatical evolution algorithm for solving a artificial ant problem";
ga.Problem = problem;
SamplesUtils.ConfigureOsGeneticAlgorithmParameters(
ga, 200, 1, 50, 0.05, 200);
#endregion
return ga;
}
#endregion
#region symbolic regression
private const string GeSymbolicRegressionSampleFileName = "GE_SymbReg";
[TestMethod]
[TestCategory("Samples.Create")]
[TestProperty("Time", "medium")]
public void CreateGeSymbolicRegressionSampleTest() {
var geSymbReg = CreateGeSymbolicRegressionSample();
string path = Path.Combine(SamplesUtils.SamplesDirectory, GeSymbolicRegressionSampleFileName + SamplesUtils.SampleFileExtension);
serializer.Serialize(geSymbReg, path);
}
[TestMethod]
[TestCategory("Samples.Execute")]
[TestProperty("Time", "long")]
public void RunGeSymbolicRegressionSampleTest() {
var ga = CreateGeSymbolicRegressionSample();
ga.SetSeedRandomly.Value = false;
SamplesUtils.RunAlgorithm(ga);
}
public OffspringSelectionGeneticAlgorithm CreateGeSymbolicRegressionSample() {
var ga = new OffspringSelectionGeneticAlgorithm();
#region Problem Configuration
var problem = new HeuristicLab.Problems.GrammaticalEvolution.GESymbolicRegressionSingleObjectiveProblem();
#endregion
#region Algorithm Configuration
ga.Name = "Grammatical Evolution - Symbolic Regression (Poly-10)";
ga.Description = "Grammatical evolution algorithm for solving a symbolic regression problem problem";
ga.Problem = problem;
problem.Load(new PolyTen().GenerateRegressionData());
// must occur after loading problem data because the grammar creates symbols for random constants once the data is loaded
var consts = problem.SymbolicExpressionTreeGrammar.AllowedSymbols.OfType().ToList();
foreach (var c in consts) {
problem.SymbolicExpressionTreeGrammar.RemoveSymbol(c);
}
SamplesUtils.ConfigureOsGeneticAlgorithmParameters(
ga, 1000, 1, 50, 0.05, 200);
#endregion
return ga;
}
#endregion
}
}