#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.IO;
using System.Linq;
using HEAL.Attic;
using HeuristicLab.Algorithms.GeneticAlgorithm;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Classification;
using HeuristicLab.Problems.Instances.DataAnalysis;
using HeuristicLab.Selection;
using Microsoft.VisualStudio.TestTools.UnitTesting;
namespace HeuristicLab.Tests {
[TestClass]
public class GPSymbolicClassificationSampleTest {
private const string SampleFileName = "SGP_SymbClass";
private static readonly ProtoBufSerializer serializer = new ProtoBufSerializer();
[TestMethod]
[TestCategory("Samples.Create")]
[TestProperty("Time", "medium")]
public void CreateGpSymbolicClassificationSampleTest() {
var ga = CreateGpSymbolicClassificationSample();
string path = Path.Combine(SamplesUtils.SamplesDirectory, SampleFileName + SamplesUtils.SampleFileExtension);
serializer .Serialize(ga, path);
}
[TestMethod]
[TestCategory("Samples.Execute")]
[TestProperty("Time", "long")]
public void RunGpSymbolicClassificationSampleTest() {
var ga = CreateGpSymbolicClassificationSample();
ga.SetSeedRandomly.Value = false;
SamplesUtils.RunAlgorithm(ga);
Assert.AreEqual(0.141880203907627, SamplesUtils.GetDoubleResult(ga, "BestQuality"), 1E-8);
Assert.AreEqual(4.3246992327753295, SamplesUtils.GetDoubleResult(ga, "CurrentAverageQuality"), 1E-8);
Assert.AreEqual(100.62175156249987, SamplesUtils.GetDoubleResult(ga, "CurrentWorstQuality"), 1E-8);
Assert.AreEqual(100900, SamplesUtils.GetIntResult(ga, "EvaluatedSolutions"));
var bestTrainingSolution = (IClassificationSolution)ga.Results["Best training solution"].Value;
Assert.AreEqual(0.80875, bestTrainingSolution.TrainingAccuracy, 1E-8);
Assert.AreEqual(0.795031055900621, bestTrainingSolution.TestAccuracy, 1E-8);
var bestValidationSolution = (IClassificationSolution)ga.Results["Best validation solution"].Value;
Assert.AreEqual(0.81375, bestValidationSolution.TrainingAccuracy, 1E-8);
Assert.AreEqual(0.788819875776398, bestValidationSolution.TestAccuracy, 1E-8);
}
private GeneticAlgorithm CreateGpSymbolicClassificationSample() {
GeneticAlgorithm ga = new GeneticAlgorithm();
#region Problem Configuration
SymbolicClassificationSingleObjectiveProblem symbClassProblem = new SymbolicClassificationSingleObjectiveProblem();
symbClassProblem.Name = "Mammography Classification Problem";
symbClassProblem.Description = "Mammography dataset imported from the UCI machine learning repository (http://archive.ics.uci.edu/ml/datasets/Mammographic+Mass)";
UCIInstanceProvider provider = new UCIInstanceProvider();
var instance = provider.GetDataDescriptors().Where(x => x.Name.Equals("Mammography, M. Elter, 2007")).Single();
var mammoData = (ClassificationProblemData)provider.LoadData(instance);
mammoData.TargetVariableParameter.Value = mammoData.TargetVariableParameter.ValidValues
.First(v => v.Value == "Severity");
mammoData.InputVariables.SetItemCheckedState(
mammoData.InputVariables.Single(x => x.Value == "BI-RADS"), false);
mammoData.InputVariables.SetItemCheckedState(
mammoData.InputVariables.Single(x => x.Value == "Age"), true);
mammoData.InputVariables.SetItemCheckedState(
mammoData.InputVariables.Single(x => x.Value == "Shape"), true);
mammoData.InputVariables.SetItemCheckedState(
mammoData.InputVariables.Single(x => x.Value == "Margin"), true);
mammoData.InputVariables.SetItemCheckedState(
mammoData.InputVariables.Single(x => x.Value == "Density"), true);
mammoData.InputVariables.SetItemCheckedState(
mammoData.InputVariables.Single(x => x.Value == "Severity"), false);
mammoData.TrainingPartition.Start = 0;
mammoData.TrainingPartition.End = 800;
mammoData.TestPartition.Start = 800;
mammoData.TestPartition.End = 961;
mammoData.Name = "Data imported from mammographic_masses.csv";
mammoData.Description = "Original dataset: http://archive.ics.uci.edu/ml/datasets/Mammographic+Mass, missing values have been replaced with median values.";
symbClassProblem.ProblemData = mammoData;
// configure grammar
var grammar = new TypeCoherentExpressionGrammar();
grammar.ConfigureAsDefaultClassificationGrammar();
grammar.Symbols.OfType().Single().Enabled = false;
foreach (var varSy in grammar.Symbols.OfType()) varSy.VariableChangeProbability = 1.0; // for backwards compatibilty
var varSymbol = grammar.Symbols.OfType().Single();
varSymbol.WeightMu = 1.0;
varSymbol.WeightSigma = 1.0;
varSymbol.WeightManipulatorMu = 0.0;
varSymbol.WeightManipulatorSigma = 0.05;
varSymbol.MultiplicativeWeightManipulatorSigma = 0.03;
var numSymbol = grammar.Symbols.OfType().Single();
numSymbol.MaxValue = 20;
numSymbol.MinValue = -20;
numSymbol.ManipulatorMu = 0.0;
numSymbol.ManipulatorSigma = 1;
numSymbol.MultiplicativeManipulatorSigma = 0.03;
symbClassProblem.SymbolicExpressionTreeGrammar = grammar;
// configure remaining problem parameters
symbClassProblem.BestKnownQuality.Value = 0.0;
symbClassProblem.FitnessCalculationPartition.Start = 0;
symbClassProblem.FitnessCalculationPartition.End = 400;
symbClassProblem.ValidationPartition.Start = 400;
symbClassProblem.ValidationPartition.End = 800;
symbClassProblem.RelativeNumberOfEvaluatedSamples.Value = 1;
symbClassProblem.MaximumSymbolicExpressionTreeLength.Value = 100;
symbClassProblem.MaximumSymbolicExpressionTreeDepth.Value = 10;
symbClassProblem.MaximumFunctionDefinitions.Value = 0;
symbClassProblem.MaximumFunctionArguments.Value = 0;
symbClassProblem.EvaluatorParameter.Value = new SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator();
#endregion
#region Algorithm Configuration
ga.Problem = symbClassProblem;
ga.Name = "Genetic Programming - Symbolic Classification";
ga.Description = "A standard genetic programming algorithm to solve a classification problem (Mammographic+Mass dataset)";
SamplesUtils.ConfigureGeneticAlgorithmParameters(
ga, 1000, 1, 100, 0.15, 5
);
var mutator = (MultiSymbolicExpressionTreeManipulator)ga.Mutator;
mutator.Operators.OfType().Single().ShakingFactor = 0.1;
mutator.Operators.OfType().Single().ShakingFactor = 1.0;
ga.Analyzer.Operators.SetItemCheckedState(
ga.Analyzer.Operators
.OfType()
.Single(), false);
ga.Analyzer.Operators.SetItemCheckedState(
ga.Analyzer.Operators
.OfType()
.First(), false);
#endregion
return ga;
}
}
}