#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.IO; using System.Linq; using HeuristicLab.Algorithms.ALPS; using HeuristicLab.Encodings.PermutationEncoding; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Persistence.Default.Xml; using HeuristicLab.Problems.DataAnalysis.Symbolic; using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression; using HeuristicLab.Problems.Instances.DataAnalysis; using HeuristicLab.Problems.Instances.TSPLIB; using HeuristicLab.Problems.TravelingSalesman; using HeuristicLab.Selection; using Microsoft.VisualStudio.TestTools.UnitTesting; namespace HeuristicLab.Tests { [TestClass] public class AlpsTspSampleTest { private const string TspSampleFileName = "ALPSGA_TSP"; private const string SymRegSampleFileName = "ALPSGP_SymReg"; [TestMethod] [TestCategory("Samples.Create")] [TestProperty("Time", "medium")] public void CreateAlpsGaTspSampleTest() { var alpsGa = CreateAlpsGaTspSample(); string path = Path.Combine(SamplesUtils.SamplesDirectory, TspSampleFileName + SamplesUtils.SampleFileExtension); XmlGenerator.Serialize(alpsGa, path); } [TestMethod] [TestCategory("Samples.Create")] [TestProperty("Time", "medium")] public void CreateAlpsGaSymRegSampleTest() { var alpsGa = CreateAlpsGaSymRegSample(); string path = Path.Combine(SamplesUtils.SamplesDirectory, SymRegSampleFileName + SamplesUtils.SampleFileExtension); XmlGenerator.Serialize(alpsGa, path); } [TestMethod] [TestCategory("Samples.Execute")] [TestProperty("Time", "long")] public void RunAlpsGaTspSampleTest() { var alpsGa = CreateAlpsGaTspSample(); alpsGa.SetSeedRandomly.Value = false; SamplesUtils.RunAlgorithm(alpsGa); Assert.AreEqual(7967, SamplesUtils.GetDoubleResult(alpsGa, "BestQuality")); Assert.AreEqual(17565.174444444445, SamplesUtils.GetDoubleResult(alpsGa, "CurrentAverageQuality")); Assert.AreEqual(50295, SamplesUtils.GetDoubleResult(alpsGa, "CurrentWorstQuality")); Assert.AreEqual(621900, SamplesUtils.GetIntResult(alpsGa, "EvaluatedSolutions")); } [TestMethod] [TestCategory("Samples.Execute")] [TestProperty("Time", "long")] public void RunAlpsGaSymRegSampleTest() { var alpsGa = CreateAlpsGaSymRegSample(); alpsGa.SetSeedRandomly.Value = false; SamplesUtils.RunAlgorithm(alpsGa); Assert.AreEqual(265855, SamplesUtils.GetIntResult(alpsGa, "EvaluatedSolutions")); } private AlpsGeneticAlgorithm CreateAlpsGaTspSample() { AlpsGeneticAlgorithm alpsGa = new AlpsGeneticAlgorithm(); #region Problem Configuration var provider = new TSPLIBTSPInstanceProvider(); var instance = provider.GetDataDescriptors().Single(x => x.Name == "ch130"); TravelingSalesmanProblem tspProblem = new TravelingSalesmanProblem(); tspProblem.Load(provider.LoadData(instance)); tspProblem.UseDistanceMatrix.Value = true; #endregion #region Algorithm Configuration alpsGa.Name = "ALPS Genetic Algorithm - TSP"; alpsGa.Description = "An age-layered population structure genetic algorithm which solves the \"ch130\" traveling salesman problem (imported from TSPLIB)"; alpsGa.Problem = tspProblem; SamplesUtils.ConfigureAlpsGeneticAlgorithmParameters(alpsGa, numberOfLayers: 1000, popSize: 100, mutationRate: 0.05, elites: 1, plusSelection: true, agingScheme: AgingScheme.Polynomial, ageGap: 20, ageInheritance: 1.0, maxGens: 1000); var checkedCrossovers = new[] { typeof(EdgeRecombinationCrossover), typeof(MaximalPreservativeCrossover), typeof(OrderCrossover2) }; var multiCrossover = (MultiPermutationCrossover)alpsGa.Crossover; var crossovers = multiCrossover.Operators.Where(c => checkedCrossovers.Any(cc => cc.IsInstanceOfType(c))).ToList(); foreach (var c in multiCrossover.Operators) multiCrossover.Operators.SetItemCheckedState(c, crossovers.Contains(c)); #endregion return alpsGa; } private AlpsGeneticAlgorithm CreateAlpsGaSymRegSample() { AlpsGeneticAlgorithm alpsGa = new AlpsGeneticAlgorithm(); #region Problem Configuration var provider = new VladislavlevaInstanceProvider(); var instance = provider.GetDataDescriptors().Single(x => x.Name.StartsWith("Vladislavleva-5 F5")); var symbRegProblem = new SymbolicRegressionSingleObjectiveProblem(); symbRegProblem.Load(provider.LoadData(instance)); symbRegProblem.MaximumSymbolicExpressionTreeDepth.Value = 35; symbRegProblem.MaximumSymbolicExpressionTreeLength.Value = 35; var grammar = (TypeCoherentExpressionGrammar)symbRegProblem.SymbolicExpressionTreeGrammar; grammar.Symbols.OfType().Single().Enabled = false; grammar.Symbols.OfType().Single().Enabled = false; #endregion #region Algorithm Configuration alpsGa.Name = "ALPS Genetic Programming - Symbolic Regression"; alpsGa.Description = "An ALPS-GP to solve a symbolic regression problem (Vladislavleva-5 dataset)"; alpsGa.Problem = symbRegProblem; SamplesUtils.ConfigureAlpsGeneticAlgorithmParameters(alpsGa, numberOfLayers: 1000, popSize: 100, mutationRate: 0.25, elites: 1, plusSelection: false, agingScheme: AgingScheme.Polynomial, ageGap: 15, ageInheritance: 1.0, maxGens: 500); #endregion return alpsGa; } } }