#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.IO;
using System.Linq;
using HeuristicLab.Algorithms.ALPS;
using HeuristicLab.Encodings.PermutationEncoding;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Persistence.Default.Xml;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
using HeuristicLab.Problems.Instances.DataAnalysis;
using HeuristicLab.Problems.Instances.TSPLIB;
using HeuristicLab.Problems.TravelingSalesman;
using HeuristicLab.Selection;
using Microsoft.VisualStudio.TestTools.UnitTesting;
namespace HeuristicLab.Tests {
[TestClass]
public class AlpsTspSampleTest {
private const string TspSampleFileName = "ALPSGA_TSP";
private const string SymRegSampleFileName = "ALPSGP_SymReg";
[TestMethod]
[TestCategory("Samples.Create")]
[TestProperty("Time", "medium")]
public void CreateAlpsGaTspSampleTest() {
var alpsGa = CreateAlpsGaTspSample();
string path = Path.Combine(SamplesUtils.SamplesDirectory, TspSampleFileName + SamplesUtils.SampleFileExtension);
XmlGenerator.Serialize(alpsGa, path);
}
[TestMethod]
[TestCategory("Samples.Create")]
[TestProperty("Time", "medium")]
public void CreateAlpsGaSymRegSampleTest() {
var alpsGa = CreateAlpsGaSymRegSample();
string path = Path.Combine(SamplesUtils.SamplesDirectory, SymRegSampleFileName + SamplesUtils.SampleFileExtension);
XmlGenerator.Serialize(alpsGa, path);
}
[TestMethod]
[TestCategory("Samples.Execute")]
[TestProperty("Time", "long")]
public void RunAlpsGaTspSampleTest() {
var alpsGa = CreateAlpsGaTspSample();
alpsGa.SetSeedRandomly.Value = false;
SamplesUtils.RunAlgorithm(alpsGa);
Assert.AreEqual(7967, SamplesUtils.GetDoubleResult(alpsGa, "BestQuality"));
Assert.AreEqual(17565.174444444445, SamplesUtils.GetDoubleResult(alpsGa, "CurrentAverageQuality"));
Assert.AreEqual(50295, SamplesUtils.GetDoubleResult(alpsGa, "CurrentWorstQuality"));
Assert.AreEqual(621900, SamplesUtils.GetIntResult(alpsGa, "EvaluatedSolutions"));
}
[TestMethod]
[TestCategory("Samples.Execute")]
[TestProperty("Time", "long")]
public void RunAlpsGaSymRegSampleTest() {
var alpsGa = CreateAlpsGaSymRegSample();
alpsGa.SetSeedRandomly.Value = false;
SamplesUtils.RunAlgorithm(alpsGa);
Assert.AreEqual(265855, SamplesUtils.GetIntResult(alpsGa, "EvaluatedSolutions"));
}
private AlpsGeneticAlgorithm CreateAlpsGaTspSample() {
AlpsGeneticAlgorithm alpsGa = new AlpsGeneticAlgorithm();
#region Problem Configuration
var provider = new TSPLIBTSPInstanceProvider();
var instance = provider.GetDataDescriptors().Single(x => x.Name == "ch130");
TravelingSalesmanProblem tspProblem = new TravelingSalesmanProblem();
tspProblem.Load(provider.LoadData(instance));
tspProblem.UseDistanceMatrix.Value = true;
#endregion
#region Algorithm Configuration
alpsGa.Name = "ALPS Genetic Algorithm - TSP";
alpsGa.Description = "An age-layered population structure genetic algorithm which solves the \"ch130\" traveling salesman problem (imported from TSPLIB)";
alpsGa.Problem = tspProblem;
SamplesUtils.ConfigureAlpsGeneticAlgorithmParameters(alpsGa,
numberOfLayers: 1000,
popSize: 100,
mutationRate: 0.05,
elites: 1,
plusSelection: true,
agingScheme: AgingScheme.Polynomial,
ageGap: 20,
ageInheritance: 1.0,
maxGens: 1000);
var checkedCrossovers = new[] { typeof(EdgeRecombinationCrossover), typeof(MaximalPreservativeCrossover), typeof(OrderCrossover2) };
var multiCrossover = (MultiPermutationCrossover)alpsGa.Crossover;
var crossovers = multiCrossover.Operators.Where(c => checkedCrossovers.Any(cc => cc.IsInstanceOfType(c))).ToList();
foreach (var c in multiCrossover.Operators)
multiCrossover.Operators.SetItemCheckedState(c, crossovers.Contains(c));
#endregion
return alpsGa;
}
private AlpsGeneticAlgorithm CreateAlpsGaSymRegSample() {
AlpsGeneticAlgorithm alpsGa = new AlpsGeneticAlgorithm();
#region Problem Configuration
var provider = new VladislavlevaInstanceProvider();
var instance = provider.GetDataDescriptors().Single(x => x.Name.StartsWith("Vladislavleva-5 F5"));
var symbRegProblem = new SymbolicRegressionSingleObjectiveProblem();
symbRegProblem.Load(provider.LoadData(instance));
symbRegProblem.MaximumSymbolicExpressionTreeDepth.Value = 35;
symbRegProblem.MaximumSymbolicExpressionTreeLength.Value = 35;
var grammar = (TypeCoherentExpressionGrammar)symbRegProblem.SymbolicExpressionTreeGrammar;
grammar.Symbols.OfType().Single().Enabled = false;
grammar.Symbols.OfType().Single().Enabled = false;
#endregion
#region Algorithm Configuration
alpsGa.Name = "ALPS Genetic Programming - Symbolic Regression";
alpsGa.Description = "An ALPS-GP to solve a symbolic regression problem (Vladislavleva-5 dataset)";
alpsGa.Problem = symbRegProblem;
SamplesUtils.ConfigureAlpsGeneticAlgorithmParameters(alpsGa,
numberOfLayers: 1000,
popSize: 100,
mutationRate: 0.25,
elites: 1,
plusSelection: false,
agingScheme: AgingScheme.Polynomial,
ageGap: 15,
ageInheritance: 1.0,
maxGens: 500);
#endregion
return alpsGa;
}
}
}