#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.RealVectorEncoding; using HEAL.Attic; namespace HeuristicLab.Problems.TestFunctions { /// /// The Zakharov function is implemented as described in Hedar, A. & Fukushima, M. 2004. Heuristic pattern search and its hybridization with simulated annealing for nonlinear global optimization. Optimization Methods and Software 19, pp. 291-308, Taylor & Francis. /// [Item("ZakharovEvaluator", "Evaluates the Zakharov function on a given point. The optimum of this function is 0 at the origin. It is implemented as described in Hedar, A. & Fukushima, M. 2004. Heuristic pattern search and its hybridization with simulated annealing for nonlinear global optimization. Optimization Methods and Software 19, pp. 291-308, Taylor & Francis.")] [StorableType("AB90340D-E5D0-4397-A5C3-8C7590F1727A")] public class ZakharovEvaluator : SingleObjectiveTestFunctionProblemEvaluator { public override string FunctionName { get { return "Zakharov"; } } /// /// Returns false as the Zakharov function is a minimization problem. /// public override bool Maximization { get { return false; } } /// /// Gets the optimum function value (0). /// public override double BestKnownQuality { get { return 0; } } /// /// Gets the lower and upper bound of the function. /// public override DoubleMatrix Bounds { get { return new DoubleMatrix(new double[,] { { -5, 10 } }); } } /// /// Gets the minimum problem size (1). /// public override int MinimumProblemSize { get { return 1; } } /// /// Gets the (theoretical) maximum problem size (2^31 - 1). /// public override int MaximumProblemSize { get { return int.MaxValue; } } public override RealVector GetBestKnownSolution(int dimension) { return new RealVector(dimension); } [StorableConstructor] protected ZakharovEvaluator(StorableConstructorFlag _) : base(_) { } protected ZakharovEvaluator(ZakharovEvaluator original, Cloner cloner) : base(original, cloner) { } public ZakharovEvaluator() : base() { } public override IDeepCloneable Clone(Cloner cloner) { return new ZakharovEvaluator(this, cloner); } /// /// Evaluates the test function for a specific . /// /// N-dimensional point for which the test function should be evaluated. /// The result value of the Zakharov function at the given point. public static double Apply(RealVector point) { int length = point.Length; double s1 = 0; double s2 = 0; for (int i = 0; i < length; i++) { s1 += point[i] * point[i]; s2 += 0.5 * i * point[i]; } return s1 + (s2 * s2) + (s2 * s2 * s2 * s2); } /// /// Evaluates the test function for a specific . /// /// Calls . /// N-dimensional point for which the test function should be evaluated. /// The result value of the Zakharov function at the given point. public override double Evaluate(RealVector point) { return Apply(point); } } }