#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.RealVectorEncoding;
using HEAL.Attic;
namespace HeuristicLab.Problems.TestFunctions.MultiObjective {
[Item("IHR1", "Testfunction as defined as IHR1 in \"Igel, C., Hansen, N., & Roth, S. (2007). Covariance matrix adaptation for multi-objective optimization. Evolutionary computation, 15(1), 1-28.\" [24.06.16]")]
[StorableType("16DF9415-9D12-4FB9-A985-7EEAE05A24CA")]
public class IHR1 : IHR {
protected override IEnumerable GetOptimalParetoFront(int objectives) {
List res = new List();
for (int i = 0; i <= 500; i++) {
RealVector r = new RealVector(objectives);
r[0] = 1 / 500.0 * i;
res.Add(this.Evaluate(r, objectives));
}
return res;
}
protected override double GetBestKnownHypervolume(int objectives) {
return Hypervolume.Calculate(GetOptimalParetoFront(objectives), GetReferencePoint(objectives), GetMaximization(objectives));
}
[StorableConstructor]
protected IHR1(StorableConstructorFlag _) : base(_) { }
protected IHR1(IHR1 original, Cloner cloner) : base(original, cloner) { }
public IHR1() : base() {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new IHR1(this, cloner);
}
protected override double F1(RealVector y) {
return Math.Abs(y[0]);
}
protected override double F2(RealVector y) {
var g = G(y);
return g * HF(1 - Math.Sqrt(H(y[0], y) / g), y);
}
protected override double G(RealVector y) {
double sum = 0.0;
for (int i = 1; i < y.Length; i++) {
sum += HG(y[i]);
}
return 1 + 9 * sum / (y.Length - 1);
}
}
}