#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
namespace HeuristicLab.Problems.TestFunctions.MultiObjective {
public static class Hypervolume {
///
/// The Hyprevolume-metric is defined as the Hypervolume enclosed between a given reference point,
/// that is fixed for every evaluation function and the evaluated front.
///
/// Example:
/// r is the reference Point at (1|1) and every Point p is part of the evaluated front
/// The filled Area labled HV is the 2 dimensional Hypervolume enclosed by this front.
///
/// (0|1) (1|1)
/// + +-------------r
/// | |###### HV ###|
/// | p------+######|
/// | p+#####|
/// | |#####|
/// | p-+###|
/// | p---+
/// |
/// +--------------------1
/// (0|0) (1|0)
///
/// Please note that in this example both dimensions are minimized. The reference Point need to be dominated by EVERY point in the evaluated front
///
///
///
public static double Calculate(IEnumerable front, double[] referencePoint, bool[] maximization) {
front = NonDominatedSelect.GetDominatingVectors(front, referencePoint, maximization, false);
if (!front.Any()) throw new ArgumentException("No point in the front dominates the referencePoint");
if (maximization.Length == 2)
return Calculate2D(front, referencePoint, maximization);
if (Array.TrueForAll(maximization, x => !x))
return CalculateMulitDimensional(front, referencePoint);
else throw new NotImplementedException("Hypervolume calculation for more than two dimensions is supported only with minimization problems.");
}
private static double Calculate2D(IEnumerable front, double[] referencePoint, bool[] maximization) {
if (front == null) throw new ArgumentNullException("Front must not be null.");
if (!front.Any()) throw new ArgumentException("Front must not be empty.");
if (referencePoint == null) throw new ArgumentNullException("ReferencePoint must not be null.");
if (referencePoint.Length != 2) throw new ArgumentException("ReferencePoint must have exactly two dimensions.");
double[][] set = front.ToArray();
if (set.Any(s => s.Length != 2)) throw new ArgumentException("Points in front must have exactly two dimensions.");
Array.Sort(set, new Utilities.DimensionComparer(0, maximization[0]));
double sum = 0;
for (int i = 0; i < set.Length - 1; i++) {
sum += Math.Abs((set[i][0] - set[i + 1][0])) * Math.Abs((set[i][1] - referencePoint[1]));
}
double[] lastPoint = set[set.Length - 1];
sum += Math.Abs(lastPoint[0] - referencePoint[0]) * Math.Abs(lastPoint[1] - referencePoint[1]);
return sum;
}
private static double CalculateMulitDimensional(IEnumerable front, double[] referencePoint) {
if (referencePoint == null || referencePoint.Length < 3) throw new ArgumentException("ReferencePoint unfit for complex Hypervolume calculation");
int objectives = referencePoint.Length;
var fronList = front.ToList();
fronList.StableSort(new Utilities.DimensionComparer(objectives - 1, false));
double[] regLow = Enumerable.Repeat(1E15, objectives).ToArray();
foreach (double[] p in fronList) {
for (int i = 0; i < regLow.Length; i++) {
if (p[i] < regLow[i]) regLow[i] = p[i];
}
}
return Stream(regLow, referencePoint, fronList, 0, referencePoint[objectives - 1], (int)Math.Sqrt(fronList.Count), objectives);
}
private static double Stream(double[] regionLow, double[] regionUp, List front, int split, double cover, int sqrtNoPoints, int objectives) {
double coverOld = cover;
int coverIndex = 0;
int coverIndexOld = -1;
int c;
double result = 0;
double dMeasure = GetMeasure(regionLow, regionUp, objectives);
while (cover == coverOld && coverIndex < front.Count()) {
if (coverIndexOld == coverIndex) break;
coverIndexOld = coverIndex;
if (Covers(front[coverIndex], regionLow, objectives)) {
cover = front[coverIndex][objectives - 1];
result += dMeasure * (coverOld - cover);
} else coverIndex++;
}
for (c = coverIndex; c > 0; c--) if (front[c - 1][objectives - 1] == cover) coverIndex--;
if (coverIndex == 0) return result;
bool allPiles = true;
int[] piles = new int[coverIndex];
for (int i = 0; i < coverIndex; i++) {
piles[i] = IsPile(front[i], regionLow, regionUp, objectives);
if (piles[i] == -1) {
allPiles = false;
break;
}
}
if (allPiles) {
double[] trellis = new double[regionUp.Length];
for (int j = 0; j < trellis.Length; j++) trellis[j] = regionUp[j];
double current = 0;
double next = 0;
int i = 0;
do {
current = front[i][objectives - 1];
do {
if (front[i][piles[i]] < trellis[piles[i]]) trellis[piles[i]] = front[i][piles[i]];
i++;
if (i < coverIndex) next = front[i][objectives - 1];
else { next = cover; break; }
} while (next == current);
result += ComputeTrellis(regionLow, regionUp, trellis, objectives) * (next - current);
} while (next != cover);
} else {
double bound = -1;
double[] boundaries = new double[coverIndex];
double[] noBoundaries = new double[coverIndex];
int boundIdx = 0;
int noBoundIdx = 0;
do {
for (int i = 0; i < coverIndex; i++) {
int contained = ContainesBoundary(front[i], regionLow, split);
if (contained == 0) boundaries[boundIdx++] = front[i][split];
else if (contained == 1) noBoundaries[noBoundIdx++] = front[i][split];
}
if (boundIdx > 0) bound = GetMedian(boundaries, boundIdx);
else if (noBoundIdx > sqrtNoPoints) bound = GetMedian(noBoundaries, noBoundIdx);
else split++;
} while (bound == -1.0);
List pointsChildLow, pointsChildUp;
pointsChildLow = new List();
pointsChildUp = new List();
double[] regionUpC = new double[regionUp.Length];
for (int j = 0; j < regionUpC.Length; j++) regionUpC[j] = regionUp[j];
double[] regionLowC = new double[regionLow.Length];
for (int j = 0; j < regionLowC.Length; j++) regionLowC[j] = regionLow[j];
for (int i = 0; i < coverIndex; i++) {
if (PartCovers(front[i], regionUpC, objectives)) pointsChildUp.Add(front[i]);
if (PartCovers(front[i], regionUp, objectives)) pointsChildLow.Add(front[i]);
}
//this could/should be done in Parallel
if (pointsChildUp.Count > 0) result += Stream(regionLow, regionUpC, pointsChildUp, split, cover, sqrtNoPoints, objectives);
if (pointsChildLow.Count > 0) result += Stream(regionLowC, regionUp, pointsChildLow, split, cover, sqrtNoPoints, objectives);
}
return result;
}
private static double GetMedian(double[] vector, int length) {
return vector.Take(length).Median();
}
private static double ComputeTrellis(double[] regionLow, double[] regionUp, double[] trellis, int objectives) {
bool[] bs = new bool[objectives - 1];
for (int i = 0; i < bs.Length; i++) bs[i] = true;
double result = 0;
uint noSummands = BinarayToInt(bs);
int oneCounter; double summand;
for (uint i = 1; i <= noSummands; i++) {
summand = 1;
IntToBinary(i, bs);
oneCounter = 0;
for (int j = 0; j < objectives - 1; j++) {
if (bs[j]) {
summand *= regionUp[j] - trellis[j];
oneCounter++;
} else {
summand *= regionUp[j] - regionLow[j];
}
}
if (oneCounter % 2 == 0) result -= summand;
else result += summand;
}
return result;
}
private static void IntToBinary(uint i, bool[] bs) {
for (int j = 0; j < bs.Length; j++) bs[j] = false;
uint rest = i;
int idx = 0;
while (rest != 0) {
bs[idx] = rest % 2 == 1;
rest = rest / 2;
idx++;
}
}
private static uint BinarayToInt(bool[] bs) {
uint result = 0;
for (int i = 0; i < bs.Length; i++) {
result += bs[i] ? ((uint)1 << i) : 0;
}
return result;
}
private static int IsPile(double[] cuboid, double[] regionLow, double[] regionUp, int objectives) {
int pile = cuboid.Length;
for (int i = 0; i < objectives - 1; i++) {
if (cuboid[i] > regionLow[i]) {
if (pile != objectives) return 1;
pile = i;
}
}
return pile;
}
private static double GetMeasure(double[] regionLow, double[] regionUp, int objectives) {
double volume = 1;
for (int i = 0; i < objectives - 1; i++) {
volume *= (regionUp[i] - regionLow[i]);
}
return volume;
}
private static int ContainesBoundary(double[] cub, double[] regionLow, int split) {
if (regionLow[split] >= cub[split]) return -1;
else {
for (int j = 0; j < split; j++) {
if (regionLow[j] < cub[j]) return 1;
}
}
return 0;
}
private static bool PartCovers(double[] v, double[] regionUp, int objectives) {
for (int i = 0; i < objectives - 1; i++) {
if (v[i] >= regionUp[i]) return false;
}
return true;
}
private static bool Covers(double[] v, double[] regionLow, int objectives) {
for (int i = 0; i < objectives - 1; i++) {
if (v[i] > regionLow[i]) return false;
}
return true;
}
}
}