#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.ScheduleEncoding; using HeuristicLab.Encodings.ScheduleEncoding.PriorityRulesVector; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HEAL.Attic; namespace HeuristicLab.Problems.Scheduling { [Item("JobSequencingMatrixDecoder", "Applies the GifflerThompson algorithm to create an active schedule from a JobSequencing Matrix.")] [StorableType("4BECE53D-C72B-4F96-AE96-EA01E7DE4B92")] public class PRVDecoder : ScheduleDecoder, IStochasticOperator, IJSSPOperator { public ILookupParameter RandomParameter { get { return (LookupParameter)Parameters["Random"]; } } public ILookupParameter> JobDataParameter { get { return (LookupParameter>)Parameters["JobData"]; } } #region Priority Rules //smallest number of remaining tasks private Task FILORule(ItemList tasks) { Task currentResult = tasks[tasks.Count - 1]; return currentResult; } //earliest start time private Task ESTRule(ItemList tasks, Schedule schedule) { Task currentResult = RandomRule(tasks); double currentEST = double.MaxValue; foreach (Task t in tasks) { double est = GTAlgorithmUtils.ComputeEarliestStartTime(t, schedule); if (est < currentEST) { currentEST = est; currentResult = t; } } return currentResult; } //shortest processingtime private Task SPTRule(ItemList tasks) { Task currentResult = RandomRule(tasks); foreach (Task t in tasks) { if (t.Duration < currentResult.Duration) currentResult = t; } return currentResult; } //longest processing time private Task LPTRule(ItemList tasks) { Task currentResult = RandomRule(tasks); foreach (Task t in tasks) { if (t.Duration > currentResult.Duration) currentResult = t; } return currentResult; } //most work remaining private Task MWRRule(ItemList tasks, ItemList jobs) { Task currentResult = RandomRule(tasks); double currentLargestRemainingProcessingTime = 0; foreach (Task t in tasks) { double remainingProcessingTime = 0; foreach (Task jt in jobs[t.JobNr].Tasks) { if (!jt.IsScheduled) remainingProcessingTime += jt.Duration; } if (remainingProcessingTime > currentLargestRemainingProcessingTime) { currentLargestRemainingProcessingTime = remainingProcessingTime; currentResult = t; } } return currentResult; } //least work remaining private Task LWRRule(ItemList tasks, ItemList jobs) { Task currentResult = RandomRule(tasks); double currentSmallestRemainingProcessingTime = double.MaxValue; foreach (Task t in tasks) { double remainingProcessingTime = 0; foreach (Task jt in jobs[t.JobNr].Tasks) { if (!jt.IsScheduled) remainingProcessingTime += jt.Duration; } if (remainingProcessingTime < currentSmallestRemainingProcessingTime) { currentSmallestRemainingProcessingTime = remainingProcessingTime; currentResult = t; } } return currentResult; } //most operations remaining private Task MORRule(ItemList tasks, ItemList jobs) { Task currentResult = RandomRule(tasks); int currentLargestNrOfRemainingTasks = 0; foreach (Task t in tasks) { int nrOfRemainingTasks = 0; foreach (Task jt in jobs[t.JobNr].Tasks) { if (!jt.IsScheduled) nrOfRemainingTasks++; } if (currentLargestNrOfRemainingTasks < nrOfRemainingTasks) { currentLargestNrOfRemainingTasks = nrOfRemainingTasks; currentResult = t; } } return currentResult; } //least operationsremaining private Task LORRule(ItemList tasks, ItemList jobs) { Task currentResult = RandomRule(tasks); int currentSmallestNrOfRemainingTasks = int.MaxValue; foreach (Task t in tasks) { int nrOfRemainingTasks = 0; foreach (Task jt in jobs[t.JobNr].Tasks) { if (!jt.IsScheduled) nrOfRemainingTasks++; } if (currentSmallestNrOfRemainingTasks > nrOfRemainingTasks) { currentSmallestNrOfRemainingTasks = nrOfRemainingTasks; currentResult = t; } } return currentResult; } //first operation in Queue private Task FIFORule(ItemList tasks) { Task currentResult = tasks[0]; return currentResult; } //random private Task RandomRule(ItemList tasks) { Task currentResult = tasks[RandomParameter.ActualValue.Next(tasks.Count)]; return currentResult; } #endregion [StorableConstructor] protected PRVDecoder(StorableConstructorFlag _) : base(_) { } protected PRVDecoder(PRVDecoder original, Cloner cloner) : base(original, cloner) { } public PRVDecoder() : base() { Parameters.Add(new LookupParameter("Random", "The pseudo random number generator which should be used for stochastic manipulation operators.")); Parameters.Add(new LookupParameter>("JobData", "Job data taken from the SchedulingProblem - Instance.")); ScheduleEncodingParameter.ActualName = "PriorityRulesVector"; } public override IDeepCloneable Clone(Cloner cloner) { return new PRVDecoder(this, cloner); } private Task SelectTaskFromConflictSet(ItemList conflictSet, int ruleIndex, int nrOfRules, Schedule schedule, ItemList jobs) { if (conflictSet.Count == 1) return conflictSet[0]; ruleIndex = ruleIndex % nrOfRules; switch (ruleIndex) { case 0: return FILORule(conflictSet); case 1: return ESTRule(conflictSet, schedule); case 2: return SPTRule(conflictSet); case 3: return LPTRule(conflictSet); case 4: return MWRRule(conflictSet, jobs); case 5: return LWRRule(conflictSet, jobs); case 6: return MORRule(conflictSet, jobs); case 7: return LORRule(conflictSet, jobs); case 8: return FIFORule(conflictSet); case 9: return RandomRule(conflictSet); default: return RandomRule(conflictSet); } } public override Schedule CreateScheduleFromEncoding(IScheduleEncoding encoding) { var solution = encoding as PRVEncoding; if (solution == null) throw new InvalidOperationException("Encoding is not of type PWREncoding"); var jobs = (ItemList)JobDataParameter.ActualValue.Clone(); var resultingSchedule = new Schedule(jobs[0].Tasks.Count); //Reset scheduled tasks in result foreach (Job j in jobs) { foreach (Task t in j.Tasks) { t.IsScheduled = false; } } //GT-Algorithm //STEP 0 - Compute a list of "earliest operations" ItemList earliestTasksList = GTAlgorithmUtils.GetEarliestNotScheduledTasks(jobs); //int currentDecisionIndex = 0; while (earliestTasksList.Count > 0) { //STEP 1 - Get earliest not scheduled operation with minimal earliest completing time Task minimal = GTAlgorithmUtils.GetTaskWithMinimalEC(earliestTasksList, resultingSchedule); //STEP 2 - Compute a conflict set of all operations that can be scheduled on the machine the previously selected operation runs on ItemList conflictSet = GTAlgorithmUtils.GetConflictSetForTask(minimal, earliestTasksList, jobs, resultingSchedule); //STEP 3 - Select an operation from the conflict set (various methods depending on how the algorithm should work..) //Task selectedTask = SelectTaskFromConflictSet(conflictSet, solution.PriorityRulesVector [currentDecisionIndex++], solution.NrOfRules.Value); Task selectedTask = SelectTaskFromConflictSet(conflictSet, solution.PriorityRulesVector[minimal.JobNr], solution.NrOfRules.Value, resultingSchedule, jobs); //STEP 4 - Adding the selected operation to the current schedule selectedTask.IsScheduled = true; double startTime = GTAlgorithmUtils.ComputeEarliestStartTime(selectedTask, resultingSchedule); resultingSchedule.ScheduleTask(selectedTask.ResourceNr, startTime, selectedTask.Duration, selectedTask.JobNr); //STEP 5 - Back to STEP 1 earliestTasksList = GTAlgorithmUtils.GetEarliestNotScheduledTasks(jobs); } return resultingSchedule; } } }