#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.ScheduleEncoding;
using HeuristicLab.Encodings.ScheduleEncoding.PriorityRulesVector;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HEAL.Attic;
namespace HeuristicLab.Problems.Scheduling {
[Item("JobSequencingMatrixDecoder", "Applies the GifflerThompson algorithm to create an active schedule from a JobSequencing Matrix.")]
[StorableType("4BECE53D-C72B-4F96-AE96-EA01E7DE4B92")]
public class PRVDecoder : ScheduleDecoder, IStochasticOperator, IJSSPOperator {
public ILookupParameter RandomParameter {
get { return (LookupParameter)Parameters["Random"]; }
}
public ILookupParameter> JobDataParameter {
get { return (LookupParameter>)Parameters["JobData"]; }
}
#region Priority Rules
//smallest number of remaining tasks
private Task FILORule(ItemList tasks) {
Task currentResult = tasks[tasks.Count - 1];
return currentResult;
}
//earliest start time
private Task ESTRule(ItemList tasks, Schedule schedule) {
Task currentResult = RandomRule(tasks);
double currentEST = double.MaxValue;
foreach (Task t in tasks) {
double est = GTAlgorithmUtils.ComputeEarliestStartTime(t, schedule);
if (est < currentEST) {
currentEST = est;
currentResult = t;
}
}
return currentResult;
}
//shortest processingtime
private Task SPTRule(ItemList tasks) {
Task currentResult = RandomRule(tasks);
foreach (Task t in tasks) {
if (t.Duration < currentResult.Duration)
currentResult = t;
}
return currentResult;
}
//longest processing time
private Task LPTRule(ItemList tasks) {
Task currentResult = RandomRule(tasks);
foreach (Task t in tasks) {
if (t.Duration > currentResult.Duration)
currentResult = t;
}
return currentResult;
}
//most work remaining
private Task MWRRule(ItemList tasks, ItemList jobs) {
Task currentResult = RandomRule(tasks);
double currentLargestRemainingProcessingTime = 0;
foreach (Task t in tasks) {
double remainingProcessingTime = 0;
foreach (Task jt in jobs[t.JobNr].Tasks) {
if (!jt.IsScheduled)
remainingProcessingTime += jt.Duration;
}
if (remainingProcessingTime > currentLargestRemainingProcessingTime) {
currentLargestRemainingProcessingTime = remainingProcessingTime;
currentResult = t;
}
}
return currentResult;
}
//least work remaining
private Task LWRRule(ItemList tasks, ItemList jobs) {
Task currentResult = RandomRule(tasks);
double currentSmallestRemainingProcessingTime = double.MaxValue;
foreach (Task t in tasks) {
double remainingProcessingTime = 0;
foreach (Task jt in jobs[t.JobNr].Tasks) {
if (!jt.IsScheduled)
remainingProcessingTime += jt.Duration;
}
if (remainingProcessingTime < currentSmallestRemainingProcessingTime) {
currentSmallestRemainingProcessingTime = remainingProcessingTime;
currentResult = t;
}
}
return currentResult;
}
//most operations remaining
private Task MORRule(ItemList tasks, ItemList jobs) {
Task currentResult = RandomRule(tasks);
int currentLargestNrOfRemainingTasks = 0;
foreach (Task t in tasks) {
int nrOfRemainingTasks = 0;
foreach (Task jt in jobs[t.JobNr].Tasks) {
if (!jt.IsScheduled)
nrOfRemainingTasks++;
}
if (currentLargestNrOfRemainingTasks < nrOfRemainingTasks) {
currentLargestNrOfRemainingTasks = nrOfRemainingTasks;
currentResult = t;
}
}
return currentResult;
}
//least operationsremaining
private Task LORRule(ItemList tasks, ItemList jobs) {
Task currentResult = RandomRule(tasks);
int currentSmallestNrOfRemainingTasks = int.MaxValue;
foreach (Task t in tasks) {
int nrOfRemainingTasks = 0;
foreach (Task jt in jobs[t.JobNr].Tasks) {
if (!jt.IsScheduled)
nrOfRemainingTasks++;
}
if (currentSmallestNrOfRemainingTasks > nrOfRemainingTasks) {
currentSmallestNrOfRemainingTasks = nrOfRemainingTasks;
currentResult = t;
}
}
return currentResult;
}
//first operation in Queue
private Task FIFORule(ItemList tasks) {
Task currentResult = tasks[0];
return currentResult;
}
//random
private Task RandomRule(ItemList tasks) {
Task currentResult = tasks[RandomParameter.ActualValue.Next(tasks.Count)];
return currentResult;
}
#endregion
[StorableConstructor]
protected PRVDecoder(StorableConstructorFlag _) : base(_) { }
protected PRVDecoder(PRVDecoder original, Cloner cloner) : base(original, cloner) { }
public PRVDecoder()
: base() {
Parameters.Add(new LookupParameter("Random", "The pseudo random number generator which should be used for stochastic manipulation operators."));
Parameters.Add(new LookupParameter>("JobData", "Job data taken from the SchedulingProblem - Instance."));
ScheduleEncodingParameter.ActualName = "PriorityRulesVector";
}
public override IDeepCloneable Clone(Cloner cloner) {
return new PRVDecoder(this, cloner);
}
private Task SelectTaskFromConflictSet(ItemList conflictSet, int ruleIndex, int nrOfRules, Schedule schedule, ItemList jobs) {
if (conflictSet.Count == 1)
return conflictSet[0];
ruleIndex = ruleIndex % nrOfRules;
switch (ruleIndex) {
case 0: return FILORule(conflictSet);
case 1: return ESTRule(conflictSet, schedule);
case 2: return SPTRule(conflictSet);
case 3: return LPTRule(conflictSet);
case 4: return MWRRule(conflictSet, jobs);
case 5: return LWRRule(conflictSet, jobs);
case 6: return MORRule(conflictSet, jobs);
case 7: return LORRule(conflictSet, jobs);
case 8: return FIFORule(conflictSet);
case 9: return RandomRule(conflictSet);
default: return RandomRule(conflictSet);
}
}
public override Schedule CreateScheduleFromEncoding(IScheduleEncoding encoding) {
var solution = encoding as PRVEncoding;
if (solution == null) throw new InvalidOperationException("Encoding is not of type PWREncoding");
var jobs = (ItemList)JobDataParameter.ActualValue.Clone();
var resultingSchedule = new Schedule(jobs[0].Tasks.Count);
//Reset scheduled tasks in result
foreach (Job j in jobs) {
foreach (Task t in j.Tasks) {
t.IsScheduled = false;
}
}
//GT-Algorithm
//STEP 0 - Compute a list of "earliest operations"
ItemList earliestTasksList = GTAlgorithmUtils.GetEarliestNotScheduledTasks(jobs);
//int currentDecisionIndex = 0;
while (earliestTasksList.Count > 0) {
//STEP 1 - Get earliest not scheduled operation with minimal earliest completing time
Task minimal = GTAlgorithmUtils.GetTaskWithMinimalEC(earliestTasksList, resultingSchedule);
//STEP 2 - Compute a conflict set of all operations that can be scheduled on the machine the previously selected operation runs on
ItemList conflictSet = GTAlgorithmUtils.GetConflictSetForTask(minimal, earliestTasksList, jobs, resultingSchedule);
//STEP 3 - Select an operation from the conflict set (various methods depending on how the algorithm should work..)
//Task selectedTask = SelectTaskFromConflictSet(conflictSet, solution.PriorityRulesVector [currentDecisionIndex++], solution.NrOfRules.Value);
Task selectedTask = SelectTaskFromConflictSet(conflictSet, solution.PriorityRulesVector[minimal.JobNr], solution.NrOfRules.Value, resultingSchedule, jobs);
//STEP 4 - Adding the selected operation to the current schedule
selectedTask.IsScheduled = true;
double startTime = GTAlgorithmUtils.ComputeEarliestStartTime(selectedTask, resultingSchedule);
resultingSchedule.ScheduleTask(selectedTask.ResourceNr, startTime, selectedTask.Duration, selectedTask.JobNr);
//STEP 5 - Back to STEP 1
earliestTasksList = GTAlgorithmUtils.GetEarliestNotScheduledTasks(jobs);
}
return resultingSchedule;
}
}
}