#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class VariableNetworkInstanceProvider : ArtificialRegressionInstanceProvider { public override string Name { get { return "Variable Network Instances"; } } public override string Description { get { return "A set of regression benchmark instances for variable network analysis. The data for these instances are randomly generated as described in the reference publication."; } } public override Uri WebLink { get { return new Uri("http://dev.heuristiclab.com"); } } public override string ReferencePublication { get { return "G. Kronberger, B. Burlacu, M. Kommenda, S. Winkler, M. Affenzeller. Measures for the Evaluation and Comparison of Graphical Model Structures. to appear in Computer Aided Systems Theory - EUROCAST 2017, Springer 2018"; } } public int Seed { get; private set; } public VariableNetworkInstanceProvider() : this((int)DateTime.Now.Ticks) { } public VariableNetworkInstanceProvider(int seed) : base() { Seed = seed; } public override IEnumerable GetDataDescriptors() { var numVariables = new int[] { 10, 20, 50, 100 }; var noiseRatios = new double[] { 0, 0.01, 0.05, 0.1, 0.2 }; var rand = new MersenneTwister((uint)Seed); // use fixed seed for deterministic problem generation var lr = (from size in numVariables from noiseRatio in noiseRatios select new LinearVariableNetwork(size, noiseRatio, new MersenneTwister((uint)rand.Next()))) .Cast() .ToList(); var gp = (from size in numVariables from noiseRatio in noiseRatios select new GaussianProcessVariableNetwork(size, noiseRatio, new MersenneTwister((uint)rand.Next()))) .Cast() .ToList(); return lr.Concat(gp); } public override IRegressionProblemData LoadData(IDataDescriptor descriptor) { var varNetwork = descriptor as VariableNetwork; if (varNetwork == null) throw new ArgumentException("VariableNetworkInstanceProvider expects an VariableNetwork data descriptor."); // base call generates a regression problem data var problemData = base.LoadData(varNetwork); problemData.Description = varNetwork.Description + Environment.NewLine + varNetwork.NetworkDefinition; return problemData; } } }