#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public sealed class LinearVariableNetwork : VariableNetwork { private int numberOfFeatures; private double noiseRatio; public override string Name { get { return string.Format("LinearVariableNetwork-{0:0%} ({1} dim)", noiseRatio, numberOfFeatures); } } public LinearVariableNetwork(int numberOfFeatures, double noiseRatio, IRandom rand) : base(250, 250, numberOfFeatures, noiseRatio, rand) { this.noiseRatio = noiseRatio; this.numberOfFeatures = numberOfFeatures; } protected override IEnumerable GenerateRandomFunction(IRandom rand, List> xs, out string[] selectedVarNames, out double[] relevance) { int nl = SampleNumberOfVariables(rand, numberOfFeatures); var selectedIdx = Enumerable.Range(0, xs.Count).Shuffle(rand) .Take(nl).ToArray(); var selectedVars = selectedIdx.Select(i => xs[i]).ToArray(); selectedVarNames = selectedIdx.Select(i => VariableNames[i]).ToArray(); return SampleLinearFunction(rand, selectedVars, out relevance); } private IEnumerable SampleLinearFunction(IRandom rand, List[] xs, out double[] relevance) { int nl = xs.Length; int nRows = xs.First().Count; // sample standardized coefficients iid ~ N(0, 1) var c = Enumerable.Range(0, nRows).Select(_ => NormalDistributedRandom.NextDouble(rand, 0, 1)).ToArray(); // calculate scaled coefficients (variables with large variance should have smaller coefficients) var scaledC = Enumerable.Range(0, nl) .Select(i => c[i] / xs[i].StandardDeviationPop()) .ToArray(); var y = EvaluteLinearModel(xs, scaledC); relevance = CalculateRelevance(y, xs, scaledC); return y; } private double[] EvaluteLinearModel(List[] xs, double[] c) { int nRows = xs.First().Count; var y = new double[nRows]; for(int row = 0; row < nRows; row++) { y[row] = xs.Select(xi => xi[row]).Zip(c, (xij, cj) => xij * cj).Sum(); y[row] /= c.Length; } return y; } // calculate variable relevance based on removal of variables // 1) to remove a variable we set it's coefficient to zero // 2) calculate MSE of the original target values (y) to the updated targes y' (after variable removal) // 3) relevance is larger if MSE(y,y') is large // 4) scale impacts so that the most important variable has impact = 1 private double[] CalculateRelevance(double[] y, List[] xs, double[] l) { var changedL = new double[l.Length]; var relevance = new double[l.Length]; for(int i = 0; i < l.Length; i++) { Array.Copy(l, changedL, changedL.Length); changedL[i] = 0.0; var yChanged = EvaluteLinearModel(xs, changedL); OnlineCalculatorError error; var mse = OnlineMeanSquaredErrorCalculator.Calculate(y, yChanged, out error); if(error != OnlineCalculatorError.None) mse = double.MaxValue; relevance[i] = mse; } // scale so that max relevance is 1.0 var maxRel = relevance.Max(); for(int i = 0; i < relevance.Length; i++) relevance[i] /= maxRel; return relevance; } } }