#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Random;
namespace HeuristicLab.Problems.Instances.DataAnalysis {
public sealed class LinearVariableNetwork : VariableNetwork {
private int numberOfFeatures;
private double noiseRatio;
public override string Name { get { return string.Format("LinearVariableNetwork-{0:0%} ({1} dim)", noiseRatio, numberOfFeatures); } }
public LinearVariableNetwork(int numberOfFeatures, double noiseRatio,
IRandom rand)
: base(250, 250, numberOfFeatures, noiseRatio, rand) {
this.noiseRatio = noiseRatio;
this.numberOfFeatures = numberOfFeatures;
}
protected override IEnumerable GenerateRandomFunction(IRandom rand, List> xs, out string[] selectedVarNames, out double[] relevance) {
int nl = SampleNumberOfVariables(rand, numberOfFeatures);
var selectedIdx = Enumerable.Range(0, xs.Count).Shuffle(rand)
.Take(nl).ToArray();
var selectedVars = selectedIdx.Select(i => xs[i]).ToArray();
selectedVarNames = selectedIdx.Select(i => VariableNames[i]).ToArray();
return SampleLinearFunction(rand, selectedVars, out relevance);
}
private IEnumerable SampleLinearFunction(IRandom rand, List[] xs, out double[] relevance) {
int nl = xs.Length;
int nRows = xs.First().Count;
// sample standardized coefficients iid ~ N(0, 1)
var c = Enumerable.Range(0, nRows).Select(_ => NormalDistributedRandom.NextDouble(rand, 0, 1)).ToArray();
// calculate scaled coefficients (variables with large variance should have smaller coefficients)
var scaledC = Enumerable.Range(0, nl)
.Select(i => c[i] / xs[i].StandardDeviationPop())
.ToArray();
var y = EvaluteLinearModel(xs, scaledC);
relevance = CalculateRelevance(y, xs, scaledC);
return y;
}
private double[] EvaluteLinearModel(List[] xs, double[] c) {
int nRows = xs.First().Count;
var y = new double[nRows];
for(int row = 0; row < nRows; row++) {
y[row] = xs.Select(xi => xi[row]).Zip(c, (xij, cj) => xij * cj).Sum();
y[row] /= c.Length;
}
return y;
}
// calculate variable relevance based on removal of variables
// 1) to remove a variable we set it's coefficient to zero
// 2) calculate MSE of the original target values (y) to the updated targes y' (after variable removal)
// 3) relevance is larger if MSE(y,y') is large
// 4) scale impacts so that the most important variable has impact = 1
private double[] CalculateRelevance(double[] y, List[] xs, double[] l) {
var changedL = new double[l.Length];
var relevance = new double[l.Length];
for(int i = 0; i < l.Length; i++) {
Array.Copy(l, changedL, changedL.Length);
changedL[i] = 0.0;
var yChanged = EvaluteLinearModel(xs, changedL);
OnlineCalculatorError error;
var mse = OnlineMeanSquaredErrorCalculator.Calculate(y, yChanged, out error);
if(error != OnlineCalculatorError.None) mse = double.MaxValue;
relevance[i] = mse;
}
// scale so that max relevance is 1.0
var maxRel = relevance.Max();
for(int i = 0; i < relevance.Length; i++) relevance[i] /= maxRel;
return relevance;
}
}
}