#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Core; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public sealed class GaussianProcessVariableNetwork : VariableNetwork { private int numberOfFeatures; private double noiseRatio; public override string Name { get { return string.Format("GaussianProcessVariableNetwork-{0:0%} ({1} dim)", noiseRatio, numberOfFeatures); } } public GaussianProcessVariableNetwork(int numberOfFeatures, double noiseRatio, IRandom rand) : base(250, 250, numberOfFeatures, noiseRatio, rand) { this.noiseRatio = noiseRatio; this.numberOfFeatures = numberOfFeatures; } // sample the input variables that are actually used and sample from a Gaussian process protected override IEnumerable GenerateRandomFunction(IRandom rand, List> xs, out string[] selectedVarNames, out double[] relevance) { int nl = SampleNumberOfVariables(rand, xs.Count); var selectedIdx = Enumerable.Range(0, xs.Count).Shuffle(rand) .Take(nl).ToArray(); var selectedVars = selectedIdx.Select(i => xs[i]).ToArray(); selectedVarNames = selectedIdx.Select(i => VariableNames[i]).ToArray(); return SampleGaussianProcess(rand, selectedVars, out relevance); } private IEnumerable SampleGaussianProcess(IRandom rand, List[] xs, out double[] relevance) { int nl = xs.Length; int nRows = xs.First().Count; // sample u iid ~ N(0, 1) var u = Enumerable.Range(0, nRows).Select(_ => NormalDistributedRandom.NextDouble(rand, 0, 1)).ToArray(); // sample actual length-scales var l = Enumerable.Range(0, nl) .Select(_ => rand.NextDouble() * 2 + 0.5) .ToArray(); double[,] K = CalculateCovariance(xs, l); // decompose alglib.trfac.spdmatrixcholesky(ref K, nRows, false); // calc y = Lu var y = new double[u.Length]; alglib.ablas.rmatrixmv(nRows, nRows, K, 0, 0, 0, u, 0, ref y, 0); // calculate relevance by removing dimensions relevance = CalculateRelevance(y, u, xs, l); return y; } // calculate variable relevance based on removal of variables // 1) to remove a variable we set it's length scale to infinity (no relation of the variable value to the target) // 2) calculate MSE of the original target values (y) to the updated targes y' (after variable removal) // 3) relevance is larger if MSE(y,y') is large // 4) scale impacts so that the most important variable has impact = 1 private double[] CalculateRelevance(double[] y, double[] u, List[] xs, double[] l) { int nRows = xs.First().Count; var changedL = new double[l.Length]; var relevance = new double[l.Length]; for(int i = 0; i < l.Length; i++) { Array.Copy(l, changedL, changedL.Length); changedL[i] = double.MaxValue; var changedK = CalculateCovariance(xs, changedL); var yChanged = new double[u.Length]; alglib.ablas.rmatrixmv(nRows, nRows, changedK, 0, 0, 0, u, 0, ref yChanged, 0); OnlineCalculatorError error; var mse = OnlineMeanSquaredErrorCalculator.Calculate(y, yChanged, out error); if(error != OnlineCalculatorError.None) mse = double.MaxValue; relevance[i] = mse; } // scale so that max relevance is 1.0 var maxRel = relevance.Max(); for(int i = 0; i < relevance.Length; i++) relevance[i] /= maxRel; return relevance; } private double[,] CalculateCovariance(List[] xs, double[] l) { int nRows = xs.First().Count; double[,] K = new double[nRows, nRows]; for(int r = 0; r < nRows; r++) { double[] xi = xs.Select(x => x[r]).ToArray(); for(int c = 0; c <= r; c++) { double[] xj = xs.Select(x => x[c]).ToArray(); double dSqr = xi.Zip(xj, (xik, xjk) => (xik - xjk)) .Select(dk => dk * dk) .Zip(l, (dk, lk) => dk / lk) .Sum(); K[r, c] = Math.Exp(-dSqr); } } // add a small diagonal matrix for numeric stability for(int i = 0; i < nRows; i++) { K[i, i] += 1.0E-7; } return K; } } }