#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Random;
namespace HeuristicLab.Problems.Instances.DataAnalysis {
public class RocketFuelFlow : ArtificialRegressionDataDescriptor {
public override string Name { get { return "Rocket Fuel Flow m_dot = p0 A / sqrt(T0) * sqrt(γ/R (2/(γ+1))^((γ+1) / (γ-1)))"; } }
public override string Description {
get {
return "A full description of this problem instance is given in: " + Environment.NewLine +
"Chen Chen, Changtong Luo, Zonglin Jiang, \"A multilevel block building algorithm for fast " +
"modeling generalized separable systems\", Expert Systems with Applications, Volume 109, 2018, " +
"Pages 25-34 https://doi.org/10.1016/j.eswa.2018.05.021. " + Environment.NewLine +
"Function: m_dot = p0 A / sqrt(T0) * sqrt(γ/R (2/(γ+1))^((γ+1) / (γ-1)))" + Environment.NewLine +
"with p0 ∈ [4e5 Pa, 6e5 Pa]," + Environment.NewLine +
"A ∈ [0.5m², 1.5m²]," + Environment.NewLine +
"T0 ∈ [250°K, 260°K]," + Environment.NewLine +
"γ=1.4 and R=287 J/(kg*K)" + Environment.NewLine +
"The factor sqrt(γ/R (2/(γ+1))^((γ+1) / (γ-1))) is constant as γ and R are constants.";
}
}
protected override string TargetVariable { get { return "m_dot"; } }
protected override string[] VariableNames { get { return new string[] { "p0", "A", "T0", "m_dot" }; } }
protected override string[] AllowedInputVariables { get { return new string[] { "p0", "A", "T0" }; } }
protected override int TrainingPartitionStart { get { return 0; } }
protected override int TrainingPartitionEnd { get { return 100; } }
protected override int TestPartitionStart { get { return 100; } }
protected override int TestPartitionEnd { get { return 200; } }
public int Seed { get; private set; }
public RocketFuelFlow() : this((int)System.DateTime.Now.Ticks) { }
public RocketFuelFlow(int seed) {
Seed = seed;
}
protected override List> GenerateValues() {
var rand = new MersenneTwister((uint)Seed);
List> data = new List>();
var p0 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 4.0e5, 6.0e5).ToList();
var A = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.5, 1.5).ToList();
var T0 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 250.0, 260.0).ToList();
List m_dot = new List();
data.Add(p0);
data.Add(A);
data.Add(T0);
data.Add(m_dot);
double R = 287.0;
double γ = 1.4;
var c = Math.Sqrt(γ / R * Math.Pow(2 / (γ + 1), (γ + 1) / (γ - 1)));
for (int i = 0; i < p0.Count; i++) {
double m_dot_i = p0[i] * A[i] / Math.Sqrt(T0[i]) * c;
m_dot.Add(m_dot_i);
}
return data;
}
}
}