#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Random;
namespace HeuristicLab.Problems.Instances.DataAnalysis {
class FluidDynamics : ArtificialRegressionDataDescriptor {
public override string Name { get { return "Flow psi = x1*x2*x5*(1 - x4²/x5²) + 1/(2*Pi) * x3*log(x5/x4)"; } }
public override string Description {
get {
return "A full description of this problem instance is given in the paper: A multilevel block building algorithm for fast modeling generalized separable systems. " + Environment.NewLine +
"Authors: Chen Chen, Changtong Luo, Zonglin Jiang" + Environment.NewLine +
"Function: f(X) = x1*x2*x5*(1 - x4²/x5²) + 1/(2*Pi) * x3*log(x5/x4)" + Environment.NewLine +
"with x1 in [60,65], x2 in [30, 40], x3 in [5,10], x4 in [0.5,0.8], x5 in [0.2,0.5]";
}
}
protected override string TargetVariable { get { return "f(X)"; } }
protected override string[] VariableNames { get { return new string[] { "x1", "x2", "x3", "x4", "x5", "f(X)" }; } }
protected override string[] AllowedInputVariables { get { return new string[] { "x1", "x2", "x3", "x4", "x5" }; } }
protected override int TrainingPartitionStart { get { return 0; } }
protected override int TrainingPartitionEnd { get { return 100; } }
protected override int TestPartitionStart { get { return 100; } }
protected override int TestPartitionEnd { get { return 200; } }
public int Seed { get; private set; }
public FluidDynamics() : this((int)System.DateTime.Now.Ticks) { }
public FluidDynamics(int seed) {
Seed = seed;
}
protected override List> GenerateValues() {
var rand = new MersenneTwister((uint)Seed);
List> data = new List>();
var x1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 60.0, 65.0).ToList();
var x2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 30.0, 40.0).ToList();
var x3 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 5.0, 10.0).ToList();
var x4 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.5, 0.8).ToList();
var x5 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.2, 0.5).ToList();
List fx = new List();
data.Add(x1);
data.Add(x2);
data.Add(x3);
data.Add(x4);
data.Add(x5);
data.Add(fx);
for (int i = 0; i < x1.Count; i++) {
double fxi = x1[i] * x2[i] * x5[i] * (1 - (x4[i] * x4[i]) / (x5[i] * x5[i])) +
(1 / (2 * Math.PI)) * x3[i] * Math.Log(x5[i] / x4[i]);
fx.Add(fxi);
}
return data;
}
}
}