#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { class FluidDynamics : ArtificialRegressionDataDescriptor { public override string Name { get { return "Flow psi = x1*x2*x5*(1 - x4²/x5²) + 1/(2*Pi) * x3*log(x5/x4)"; } } public override string Description { get { return "A full description of this problem instance is given in the paper: A multilevel block building algorithm for fast modeling generalized separable systems. " + Environment.NewLine + "Authors: Chen Chen, Changtong Luo, Zonglin Jiang" + Environment.NewLine + "Function: f(X) = x1*x2*x5*(1 - x4²/x5²) + 1/(2*Pi) * x3*log(x5/x4)" + Environment.NewLine + "with x1 in [60,65], x2 in [30, 40], x3 in [5,10], x4 in [0.5,0.8], x5 in [0.2,0.5]"; } } protected override string TargetVariable { get { return "f(X)"; } } protected override string[] VariableNames { get { return new string[] { "x1", "x2", "x3", "x4", "x5", "f(X)" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "x1", "x2", "x3", "x4", "x5" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 100; } } protected override int TestPartitionStart { get { return 100; } } protected override int TestPartitionEnd { get { return 200; } } public int Seed { get; private set; } public FluidDynamics() : this((int)System.DateTime.Now.Ticks) { } public FluidDynamics(int seed) { Seed = seed; } protected override List> GenerateValues() { var rand = new MersenneTwister((uint)Seed); List> data = new List>(); var x1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 60.0, 65.0).ToList(); var x2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 30.0, 40.0).ToList(); var x3 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 5.0, 10.0).ToList(); var x4 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.5, 0.8).ToList(); var x5 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.2, 0.5).ToList(); List fx = new List(); data.Add(x1); data.Add(x2); data.Add(x3); data.Add(x4); data.Add(x5); data.Add(fx); for (int i = 0; i < x1.Count; i++) { double fxi = x1[i] * x2[i] * x5[i] * (1 - (x4[i] * x4[i]) / (x5[i] * x5[i])) + (1 / (2 * Math.PI)) * x3[i] * Math.Log(x5[i] / x4[i]); fx.Add(fxi); } return data; } } }