using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class FeynmanBonus3 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public FeynmanBonus3() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public FeynmanBonus3(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public FeynmanBonus3(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format( "Compton Scattering: E_n/(1+E_n/(m*c**2)*(1-cos(theta))) | {0} samples | {1}", trainingSamples, noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); } } protected override string TargetVariable { get { return noiseRatio == null ? "K" : "K_noise"; } } protected override string[] VariableNames { get { return new[] {"E_n", "m", "c", "theta", noiseRatio == null ? "K" : "K_noise"}; } } protected override string[] AllowedInputVariables { get { return new[] {"E_n", "m", "c", "theta"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var E_n = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var m = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var c = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var theta = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var K = new List(); data.Add(E_n); data.Add(m); data.Add(c); data.Add(theta); data.Add(K); for (var i = 0; i < E_n.Count; i++) { var res = E_n[i] / (1 + E_n[i] / (m[i] * Math.Pow(c[i], 2)) * (1 - Math.Cos(theta[i]))); K.Add(res); } if (noiseRatio != null) { var K_noise = new List(); var sigma_noise = (double) noiseRatio * K.StandardDeviationPop(); K_noise.AddRange(K.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); data.Remove(K); data.Add(K_noise); } return data; } } }