using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class FeynmanBonus20 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public FeynmanBonus20() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public FeynmanBonus20(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public FeynmanBonus20(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format( "Schwarz 13.132 (Klein-Nishina): pi*alpha**2*h**2/(m**2*c**2)*(omega_0/omega)**2*(omega_0/omega+omega/omega_0-sin(beta)**2) | {0} samples | {1}", trainingSamples, noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); } } protected override string TargetVariable { get { return noiseRatio == null ? "A" : "A_noise"; } } protected override string[] VariableNames { get { return new[] {"omega", "omega_0", "alpha", "h", "m", "c", "beta", noiseRatio == null ? "A" : "A_noise"}; } } protected override string[] AllowedInputVariables { get { return new[] {"omega", "omega_0", "alpha", "h", "m", "c", "beta"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var omega = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var omega_0 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var alpha = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var h = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var m = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var c = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var beta = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0, 6).ToList(); var A = new List(); data.Add(omega); data.Add(omega_0); data.Add(alpha); data.Add(h); data.Add(m); data.Add(c); data.Add(beta); data.Add(A); for (var i = 0; i < omega.Count; i++) { var res = Math.PI * Math.Pow(alpha[i], 2) * Math.Pow(h[i], 2) / (Math.Pow(m[i], 2) * Math.Pow(c[i], 2)) * Math.Pow(omega_0[i] / omega[i], 2) * (omega_0[i] / omega[i] + omega[i] / omega_0[i] - Math.Pow(Math.Sin(beta[i]), 2)); A.Add(res); } if (noiseRatio != null) { var A_noise = new List(); var sigma_noise = (double) noiseRatio * A.StandardDeviationPop(); A_noise.AddRange(A.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); data.Remove(A); data.Add(A_noise); } return data; } } }