using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class FeynmanBonus2 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public FeynmanBonus2() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public FeynmanBonus2(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public FeynmanBonus2(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format("Friedman Equation: sqrt(8*pi*G*rho/3-alpha*c**2/d**2) | {0} samples | {1}", trainingSamples, noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); } } protected override string TargetVariable { get { return noiseRatio == null ? "H_G" : "H_G_noise"; } } protected override string[] VariableNames { get { return new[] {"G", "rho", "alpha", "c", "d", noiseRatio == null ? "H_G" : "H_G_noise"}; } } protected override string[] AllowedInputVariables { get { return new[] {"G", "rho", "alpha", "c", "d"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var G = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var rho = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var alpha = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList(); var c = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList(); var d = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var H_G = new List(); data.Add(G); data.Add(rho); data.Add(alpha); data.Add(c); data.Add(d); data.Add(H_G); for (var i = 0; i < G.Count; i++) { var res = Math.Sqrt(8 * Math.PI * G[i] * rho[i] / 3 - alpha[i] * Math.Pow(c[i], 2) / Math.Pow(d[i], 2)); H_G.Add(res); } if (noiseRatio != null) { var H_G_noise = new List(); var sigma_noise = (double) noiseRatio * H_G.StandardDeviationPop(); H_G_noise.AddRange(H_G.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); data.Remove(H_G); data.Add(H_G_noise); } return data; } } }