using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class FeynmanBonus15 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public FeynmanBonus15() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public FeynmanBonus15(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public FeynmanBonus15(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format( "Jackson 3.45: q/sqrt(r**2+d**2-2*r*d*cos(alpha)) | {0}", noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); } } protected override string TargetVariable { get { return noiseRatio == null ? "Volt" : "Volt_noise"; } } protected override string[] VariableNames { get { return noiseRatio == null ? new[] { "q", "r", "d", "alpha", "Volt" } : new[] { "q", "r", "d", "alpha", "Volt", "Volt_noise" }; } } protected override string[] AllowedInputVariables { get { return new[] {"q", "r", "d", "alpha"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var q = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var r = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var d = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 4, 6).ToList(); var alpha = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0, 6).ToList(); var Volt = new List(); data.Add(q); data.Add(r); data.Add(d); data.Add(alpha); data.Add(Volt); for (var i = 0; i < q.Count; i++) { var res = q[i] / Math.Sqrt(Math.Pow(r[i], 2) + Math.Pow(d[i], 2) - 2 * r[i] * d[i] * Math.Cos(alpha[i])); Volt.Add(res); } var targetNoise = ValueGenerator.GenerateNoise(Volt, rand, noiseRatio); if (targetNoise != null) data.Add(targetNoise); return data; } } }