using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class FeynmanBonus12 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public FeynmanBonus12() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public FeynmanBonus12(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public FeynmanBonus12(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format( "Goldstein 8.56: sqrt((p-q*A_vec)**2*c**2+m**2*c**4)+q*Volt | {0}", noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); } } protected override string TargetVariable { get { return noiseRatio == null ? "E_n" : "E_n_noise"; } } protected override string[] VariableNames { get { return noiseRatio == null ? new[] { "m", "c", "p", "q", "A_vec", "Volt", "E_n" } : new[] { "m", "c", "p", "q", "A_vec", "Volt", "E_n", "E_n_noise" }; } } protected override string[] AllowedInputVariables { get { return new[] {"m", "c", "p", "q", "A_vec", "Volt"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var m = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var c = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var p = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var q = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var A_vec = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var Volt = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var E_n = new List(); data.Add(m); data.Add(c); data.Add(p); data.Add(q); data.Add(A_vec); data.Add(Volt); data.Add(E_n); for (var i = 0; i < m.Count; i++) { var res = Math.Sqrt(Math.Pow(p[i] - q[i] * A_vec[i], 2) * Math.Pow(c[i], 2) + Math.Pow(m[i], 2) * Math.Pow(c[i], 4)) + q[i] * Volt[i]; E_n.Add(res); } var targetNoise = GetNoisyTarget(E_n, rand); if (targetNoise != null) data.Add(targetNoise); return data; } } }