using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class FeynmanBonus11 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public FeynmanBonus11() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public FeynmanBonus11(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public FeynmanBonus11(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format( "Goldstein 3.99: sqrt(1+2*epsilon**2*E_n*L**2/(m*(Z_1*Z_2*q**2)**2)) | {0} samples | {1}", trainingSamples, noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); } } protected override string TargetVariable { get { return noiseRatio == null ? "alpha" : "alpha_noise"; } } protected override string[] VariableNames { get { return new[] {"epsilon", "L", "m", "Z_1", "Z_2", "q", "E_n", noiseRatio == null ? "alpha" : "alpha_noise"}; } } protected override string[] AllowedInputVariables { get { return new[] {"epsilon", "L", "m", "Z_1", "Z_2", "q", "E_n"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var epsilon = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var L = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var m = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var Z_1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var Z_2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var q = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var E_n = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var alpha = new List(); data.Add(epsilon); data.Add(L); data.Add(m); data.Add(Z_1); data.Add(Z_2); data.Add(q); data.Add(E_n); data.Add(alpha); for (var i = 0; i < epsilon.Count; i++) { var res = Math.Sqrt(1 + 2 * Math.Pow(epsilon[i], 2) * E_n[i] * Math.Pow(L[i], 2) / (m[i] * Math.Pow(Z_1[i] * Z_2[i] * Math.Pow(q[i], 2), 2))); alpha.Add(res); } if (noiseRatio != null) { var alpha_noise = new List(); var sigma_noise = (double) noiseRatio * alpha.StandardDeviationPop(); alpha_noise.AddRange(alpha.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); data.Remove(alpha); data.Add(alpha_noise); } return data; } } }