using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class FeynmanBonus10 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public FeynmanBonus10() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public FeynmanBonus10(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public FeynmanBonus10(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format("Goldstein 3.74: 2*pi*d**(3/2)/sqrt(G*(m1+m2)) | {0} samples | {1}", trainingSamples, noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); } } protected override string TargetVariable { get { return noiseRatio == null ? "t" : "t_noise"; } } protected override string[] VariableNames { get { return new[] {"d", "G", "m1", "m2", noiseRatio == null ? "t" : "t_noise"}; } } protected override string[] AllowedInputVariables { get { return new[] {"d", "G", "m1", "m2"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var d = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var G = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var m1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var m2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var t = new List(); data.Add(d); data.Add(G); data.Add(m1); data.Add(m2); data.Add(t); for (var i = 0; i < d.Count; i++) { var res = 2 * Math.PI * Math.Pow(d[i], 3.0 / 2) / Math.Sqrt(G[i] * (m1[i] + m2[i])); t.Add(res); } if (noiseRatio != null) { var t_noise = new List(); var sigma_noise = (double) noiseRatio * t.StandardDeviationPop(); t_noise.AddRange(t.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); data.Remove(t); data.Add(t_noise); } return data; } } }