using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class Feynman94 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public Feynman94() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public Feynman94(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public Feynman94(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format("III.14.14 I_0*(exp(q*Volt/(kb*T))-1) | {0} samples | {1}", trainingSamples, noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); } } protected override string TargetVariable { get { return noiseRatio == null ? "I" : "I_noise"; } } protected override string[] VariableNames { get { return new[] {"I_0", "q", "Volt", "kb", "T", noiseRatio == null ? "I" : "I_noise"}; } } protected override string[] AllowedInputVariables { get { return new[] {"I_0", "q", "Volt", "kb", "T"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var I_0 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var q = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList(); var Volt = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList(); var kb = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList(); var T = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList(); var I = new List(); data.Add(I_0); data.Add(q); data.Add(Volt); data.Add(kb); data.Add(T); data.Add(I); for (var i = 0; i < I_0.Count; i++) { var res = I_0[i] * (Math.Exp(q[i] * Volt[i] / (kb[i] * T[i])) - 1); I.Add(res); } if (noiseRatio != null) { var I_noise = new List(); var sigma_noise = (double) noiseRatio * I.StandardDeviationPop(); I_noise.AddRange(I.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); data.Remove(I); data.Add(I_noise); } return data; } } }