using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class Feynman90 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public Feynman90() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public Feynman90(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public Feynman90(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format( "III.9.52 (p_d*Ef*t/h*sin((omega-omega_0)*t/2)**2/((omega-omega_0)*t/2)**2 | {0} samples | {1}", trainingSamples, noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); } } protected override string TargetVariable { get { return noiseRatio == null ? "prob" : "prob_noise"; } } protected override string[] VariableNames { get { return new[] {"p_d", "Ef", "t", "h", "omega", "omega_0", noiseRatio == null ? "prob" : "prob_noise"}; } } protected override string[] AllowedInputVariables { get { return new[] {"p_d", "Ef", "t", "h", "omega", "omega_0"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var p_d = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var Ef = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var t = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var h = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var omega = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var omega_0 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var prob = new List(); data.Add(p_d); data.Add(Ef); data.Add(t); data.Add(h); data.Add(omega); data.Add(omega_0); data.Add(prob); for (var i = 0; i < p_d.Count; i++) { var res = p_d[i] * Ef[i] * t[i] / h[i] * Math.Pow(Math.Sin((omega[i] - omega_0[i]) * t[i] / 2), 2) / Math.Pow((omega[i] - omega_0[i]) * t[i] / 2, 2); prob.Add(res); } if (noiseRatio != null) { var prob_noise = new List(); var sigma_noise = (double) noiseRatio * prob.StandardDeviationPop(); prob_noise.AddRange(prob.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); data.Remove(prob); data.Add(prob_noise); } return data; } } }