using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class Feynman89 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public Feynman89() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public Feynman89(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public Feynman89(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format("III.8.54 sin(E_n*t/h)**2 | {0}", noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); } } protected override string TargetVariable { get { return noiseRatio == null ? "prob" : "prob_noise"; } } protected override string[] VariableNames { get { return noiseRatio == null ? new[] { "E_n", "t", "h", "prob" } : new[] { "E_n", "t", "h", "prob", "prob_noise" }; } } protected override string[] AllowedInputVariables { get { return new[] {"E_n", "t", "h"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var E_n = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList(); var t = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList(); var h = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 4).ToList(); var prob = new List(); data.Add(E_n); data.Add(t); data.Add(h); data.Add(prob); for (var i = 0; i < E_n.Count; i++) { var res = Math.Pow(Math.Sin(E_n[i] * t[i] / h[i]), 2); prob.Add(res); } var targetNoise = ValueGenerator.GenerateNoise(prob, rand, noiseRatio); if (targetNoise != null) data.Add(targetNoise); return data; } } }