using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class Feynman61 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public Feynman61() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public Feynman61(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public Feynman61(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format("II.11.3 q*Ef/(m*(omega_0**2-omega**2)) | {0}", noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); } } protected override string TargetVariable { get { return noiseRatio == null ? "x" : "x_noise"; } } protected override string[] VariableNames { get { return noiseRatio == null ? new[] { "q", "Ef", "m", "omega_0", "omega", "x" } : new[] { "q", "Ef", "m", "omega_0", "omega", "x", "x_noise" }; } } protected override string[] AllowedInputVariables { get { return new[] {"q", "Ef", "m", "omega_0", "omega"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var q = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var Ef = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var m = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var omega_0 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 3, 5).ToList(); var omega = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList(); var x = new List(); data.Add(q); data.Add(Ef); data.Add(m); data.Add(omega_0); data.Add(omega); data.Add(x); for (var i = 0; i < q.Count; i++) { var res = q[i] * Ef[i] / (m[i] * (Math.Pow(omega_0[i], 2) - Math.Pow(omega[i], 2))); x.Add(res); } var targetNoise = ValueGenerator.GenerateNoise(x, rand, noiseRatio); if (targetNoise != null) data.Add(targetNoise); return data; } } }