using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class Feynman6 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public Feynman6() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public Feynman6(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public Feynman6(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format("I.10.7 m_0/sqrt(1-v**2/c**2) | {0} samples | {1}", trainingSamples, noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); } } protected override string TargetVariable { get { return noiseRatio == null ? "m" : "m_noise"; } } protected override string[] VariableNames { get { return new[] {"m_0", "v", "c", noiseRatio == null ? "m" : "m_noise"}; } } protected override string[] AllowedInputVariables { get { return new[] {"m_0", "v", "c"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var m_0 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var v = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList(); var c = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 3, 10).ToList(); var m = new List(); data.Add(m_0); data.Add(v); data.Add(c); data.Add(m); for (var i = 0; i < m_0.Count; i++) { var res = m_0[i] / Math.Sqrt(1 - Math.Pow(v[i], 2) / Math.Pow(c[i], 2)); m.Add(res); } if (noiseRatio != null) { var m_noise = new List(); var sigma_noise = (double) noiseRatio * m.StandardDeviationPop(); m_noise.AddRange(m.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); data.Remove(m); data.Add(m_noise); } return data; } } }