using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class Feynman38 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public Feynman38() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public Feynman38(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public Feynman38(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format("I.37.4 I1 + I2 + 2*sqrt(I1*I2)*cos(delta) | {0}", noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); } } protected override string TargetVariable { get { return noiseRatio == null ? "Int" : "Int_noise"; } } protected override string[] VariableNames { get { return new[] {"I1", "I2", "delta", noiseRatio == null ? "Int" : "Int_noise"}; } } protected override string[] AllowedInputVariables { get { return new[] {"I1", "I2", "delta"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var I1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var I2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var delta = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var Int = new List(); data.Add(I1); data.Add(I2); data.Add(delta); data.Add(Int); for (var i = 0; i < I1.Count; i++) { var res = I1[i] + I2[i] + 2 * Math.Sqrt(I1[i] * I2[i]) * Math.Cos(delta[i]); Int.Add(res); } if (noiseRatio != null) { var Int_noise = new List(); var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Int.StandardDeviationPop(); Int_noise.AddRange(Int.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); data.Remove(Int); data.Add(Int_noise); } return data; } } }