using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class Feynman33 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public Feynman33() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public Feynman33(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public Feynman33(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format( "I.32.17 (1/2*epsilon*c*Ef**2)*(8*pi*r**2/3)*(omega**4/(omega**2-omega_0**2)**2) | {0} samples | {1}", trainingSamples, noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); } } protected override string TargetVariable { get { return noiseRatio == null ? "Pwr" : "Pwr_noise"; } } protected override string[] VariableNames { get { return new[] {"epsilon", "c", "Ef", "r", "omega", "omega_0", noiseRatio == null ? "Pwr" : "Pwr_noise"}; } } protected override string[] AllowedInputVariables { get { return new[] {"epsilon", "c", "Ef", "r", "omega", "omega_0"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var epsilon = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList(); var c = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList(); var Ef = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList(); var r = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList(); var omega = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList(); var omega_0 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 3, 5).ToList(); var Pwr = new List(); data.Add(epsilon); data.Add(c); data.Add(Ef); data.Add(r); data.Add(omega); data.Add(omega_0); data.Add(Pwr); for (var i = 0; i < epsilon.Count; i++) { var res = 1.0 / 2 * epsilon[i] * c[i] * Math.Pow(Ef[i], 2) * (8 * Math.PI * Math.Pow(r[i], 2) / 3) * (Math.Pow(omega[i], 4) / Math.Pow(Math.Pow(omega[i], 2) - Math.Pow(omega_0[i], 2), 2)); Pwr.Add(res); } if (noiseRatio != null) { var Pwr_noise = new List(); var sigma_noise = (double) noiseRatio * Pwr.StandardDeviationPop(); Pwr_noise.AddRange(Pwr.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); data.Remove(Pwr); data.Add(Pwr_noise); } return data; } } }