#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Problems.Instances.DataAnalysis {
public class ClusteringCSVInstanceProvider : ClusteringInstanceProvider {
public override string Name {
get { return "CSV File"; }
}
public override string Description {
get {
return "";
}
}
public override Uri WebLink {
get { return new Uri("http://dev.heuristiclab.com/trac.fcgi/wiki/Documentation/FAQ#DataAnalysisImportFileFormat"); }
}
public override string ReferencePublication {
get { return ""; }
}
public override IEnumerable GetDataDescriptors() {
return new List();
}
public override IClusteringProblemData LoadData(IDataDescriptor descriptor) {
throw new NotImplementedException();
}
public override bool CanImportData {
get { return true; }
}
public override IClusteringProblemData ImportData(string path) {
var csvFileParser = new TableFileParser();
csvFileParser.Parse(path, csvFileParser.AreColumnNamesInFirstLine(path));
Dataset dataset = new Dataset(csvFileParser.VariableNames, csvFileParser.Values);
// turn of input variables that are constant in the training partition
var allowedInputVars = new List();
var trainingIndizes = Enumerable.Range(0, (csvFileParser.Rows * 2) / 3);
if (trainingIndizes.Count() >= 2) {
foreach (var variableName in dataset.DoubleVariables) {
if (dataset.GetDoubleValues(variableName, trainingIndizes).Range() > 0)
allowedInputVars.Add(variableName);
}
} else {
allowedInputVars.AddRange(dataset.DoubleVariables);
}
ClusteringProblemData clusteringData = new ClusteringProblemData(dataset, allowedInputVars);
int trainingPartEnd = trainingIndizes.Last();
clusteringData.TrainingPartition.Start = trainingIndizes.First();
clusteringData.TrainingPartition.End = trainingPartEnd;
clusteringData.TestPartition.Start = trainingPartEnd;
clusteringData.TestPartition.End = csvFileParser.Rows;
clusteringData.Name = Path.GetFileName(path);
return clusteringData;
}
protected override IClusteringProblemData ImportData(string path, DataAnalysisImportType type, TableFileParser csvFileParser) {
List values = csvFileParser.Values;
if (type.Shuffle) {
values = Shuffle(values);
}
Dataset dataset = new Dataset(csvFileParser.VariableNames, values);
// turn of input variables that are constant in the training partition
var allowedInputVars = new List();
int trainingPartEnd = (csvFileParser.Rows * type.TrainingPercentage) / 100;
var trainingIndizes = Enumerable.Range(0, trainingPartEnd);
if (trainingIndizes.Count() >= 2) {
foreach (var variableName in dataset.DoubleVariables) {
if (dataset.GetDoubleValues(variableName, trainingIndizes).Range() > 0)
allowedInputVars.Add(variableName);
}
} else {
allowedInputVars.AddRange(dataset.DoubleVariables);
}
ClusteringProblemData clusteringData = new ClusteringProblemData(dataset, allowedInputVars);
clusteringData.TrainingPartition.Start = 0;
clusteringData.TrainingPartition.End = trainingPartEnd;
clusteringData.TestPartition.Start = trainingPartEnd;
clusteringData.TestPartition.End = csvFileParser.Rows;
clusteringData.Name = Path.GetFileName(path);
return clusteringData;
}
}
}