#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HEAL.Attic; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Parameters; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Problems.Instances; namespace HeuristicLab.Problems.GeneticProgramming.BasicSymbolicRegression { [Item("Koza-style Symbolic Regression", "An implementation of symbolic regression without bells-and-whistles. Use \"Symbolic Regression Problem (single-objective)\" if you want to use all features.")] [Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 900)] [StorableType("72011B73-28C6-4D5E-BEDF-27425BC87B9C")] public sealed class Problem : SymbolicExpressionTreeProblem, IRegressionProblem, IProblemInstanceConsumer, IProblemInstanceExporter { #region parameter names private const string ProblemDataParameterName = "ProblemData"; #endregion #region Parameter Properties IParameter IDataAnalysisProblem.ProblemDataParameter { get { return ProblemDataParameter; } } public IValueParameter ProblemDataParameter { get { return (IValueParameter)Parameters[ProblemDataParameterName]; } } #endregion #region Properties public IRegressionProblemData ProblemData { get { return ProblemDataParameter.Value; } set { ProblemDataParameter.Value = value; } } IDataAnalysisProblemData IDataAnalysisProblem.ProblemData { get { return ProblemData; } } #endregion public event EventHandler ProblemDataChanged; public override bool Maximization { get { return true; } } #region item cloning and persistence // persistence [StorableConstructor] private Problem(StorableConstructorFlag _) : base(_) { } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { RegisterEventHandlers(); } // cloning private Problem(Problem original, Cloner cloner) : base(original, cloner) { RegisterEventHandlers(); } public override IDeepCloneable Clone(Cloner cloner) { return new Problem(this, cloner); } #endregion public Problem() : base() { Parameters.Add(new ValueParameter(ProblemDataParameterName, "The data for the regression problem", new RegressionProblemData())); var g = new SimpleSymbolicExpressionGrammar(); // empty grammar is replaced in UpdateGrammar() base.Encoding = new SymbolicExpressionTreeEncoding(g, 100, 17); Encoding.GrammarParameter.ReadOnly = true; UpdateGrammar(); RegisterEventHandlers(); } public override double Evaluate(ISymbolicExpressionTree tree, IRandom random) { // Doesn't use classes from HeuristicLab.Problems.DataAnalysis.Symbolic to make sure that the implementation can be fully understood easily. // HeuristicLab.Problems.DataAnalysis.Symbolic would already provide all the necessary functionality (esp. interpreter) but at a much higher complexity. // Another argument is that we don't need a reference to HeuristicLab.Problems.DataAnalysis.Symbolic var problemData = ProblemData; var rows = ProblemData.TrainingIndices.ToArray(); var target = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows); var predicted = Interpret(tree, problemData.Dataset, rows); OnlineCalculatorError errorState; var r = OnlinePearsonsRCalculator.Calculate(target, predicted, out errorState); if (errorState != OnlineCalculatorError.None) r = 0; return r * r; } private IEnumerable Interpret(ISymbolicExpressionTree tree, IDataset dataset, IEnumerable rows) { // skip programRoot and startSymbol return InterpretRec(tree.Root.GetSubtree(0).GetSubtree(0), dataset, rows); } private IEnumerable InterpretRec(ISymbolicExpressionTreeNode node, IDataset dataset, IEnumerable rows) { Func, IEnumerable> binaryEval = (left, right, f) => InterpretRec(left, dataset, rows).Zip(InterpretRec(right, dataset, rows), f); switch (node.Symbol.Name) { case "+": return binaryEval(node.GetSubtree(0), node.GetSubtree(1), (x, y) => x + y); case "*": return binaryEval(node.GetSubtree(0), node.GetSubtree(1), (x, y) => x * y); case "-": return binaryEval(node.GetSubtree(0), node.GetSubtree(1), (x, y) => x - y); case "%": return binaryEval(node.GetSubtree(0), node.GetSubtree(1), (x, y) => y.IsAlmost(0.0) ? 0.0 : x / y); // protected division default: { double erc; if (double.TryParse(node.Symbol.Name, out erc)) { return rows.Select(_ => erc); } else { // assume that this is a variable name return dataset.GetDoubleValues(node.Symbol.Name, rows); } } } } #region events private void RegisterEventHandlers() { ProblemDataParameter.ValueChanged += new EventHandler(ProblemDataParameter_ValueChanged); if (ProblemDataParameter.Value != null) ProblemDataParameter.Value.Changed += new EventHandler(ProblemData_Changed); } private void ProblemDataParameter_ValueChanged(object sender, EventArgs e) { ProblemDataParameter.Value.Changed += new EventHandler(ProblemData_Changed); OnProblemDataChanged(); OnReset(); } private void ProblemData_Changed(object sender, EventArgs e) { OnReset(); } private void OnProblemDataChanged() { UpdateGrammar(); var handler = ProblemDataChanged; if (handler != null) handler(this, EventArgs.Empty); } private void UpdateGrammar() { // whenever ProblemData is changed we create a new grammar with the necessary symbols var g = new SimpleSymbolicExpressionGrammar(); g.AddSymbols(new[] { "+", "*", "%", "-" }, 2, 2); // % is protected division 1/0 := 0 foreach (var variableName in ProblemData.AllowedInputVariables) g.AddTerminalSymbol(variableName); // generate ephemeral random consts in the range [-10..+10[ (2*number of variables) var rand = new System.Random(); for (int i = 0; i < ProblemData.AllowedInputVariables.Count() * 2; i++) { string newErcSy; do { newErcSy = string.Format("{0:F2}", rand.NextDouble() * 20 - 10); } while (g.Symbols.Any(sy => sy.Name == newErcSy)); // it might happen that we generate the same constant twice g.AddTerminalSymbol(newErcSy); } Encoding.GrammarParameter.ReadOnly = false; Encoding.Grammar = g; Encoding.GrammarParameter.ReadOnly = true; } #endregion #region Import & Export public void Load(IRegressionProblemData data) { Name = data.Name; Description = data.Description; ProblemData = data; } public IRegressionProblemData Export() { return ProblemData; } #endregion } }