#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Diagnostics.Contracts;
using System.Linq;
using HEAL.Attic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
namespace HeuristicLab.Problems.GeneticProgramming.ArtificialAnt {
[Item("Artificial Ant Problem", "Represents the Artificial Ant problem.")]
[Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 170)]
[StorableType("D365171B-7077-4CC2-835C-1827EA67C843")]
public sealed class Problem : SymbolicExpressionTreeProblem, IStorableContent {
#region constant for default world (Santa Fe)
private static readonly char[][] santaFeAntTrail = new[] {
" ### ".ToCharArray(),
" # ".ToCharArray(),
" # .###.. ".ToCharArray(),
" # # # ".ToCharArray(),
" # # # ".ToCharArray(),
" ####.##### .##.. . ".ToCharArray(),
" # . # ".ToCharArray(),
" # # . ".ToCharArray(),
" # # . ".ToCharArray(),
" # # # ".ToCharArray(),
" . # . ".ToCharArray(),
" # . . ".ToCharArray(),
" # . # ".ToCharArray(),
" # # . ".ToCharArray(),
" # # ...###. ".ToCharArray(),
" . .#... # ".ToCharArray(),
" . . . ".ToCharArray(),
" # . . ".ToCharArray(),
" # # .#... ".ToCharArray(),
" # # # ".ToCharArray(),
" # # . ".ToCharArray(),
" # # . ".ToCharArray(),
" # . ...#. ".ToCharArray(),
" # . # ".ToCharArray(),
" ..##..#####. # ".ToCharArray(),
" # # ".ToCharArray(),
" # # ".ToCharArray(),
" # .#######.. ".ToCharArray(),
" # # ".ToCharArray(),
" . # ".ToCharArray(),
" .####.. ".ToCharArray(),
" ".ToCharArray()
};
#endregion
#region Parameter Properties
public IValueParameter WorldParameter {
get { return (IValueParameter)Parameters["World"]; }
}
public IValueParameter MaxTimeStepsParameter {
get { return (IValueParameter)Parameters["MaximumTimeSteps"]; }
}
#endregion
#region Properties
public BoolMatrix World {
get { return WorldParameter.Value; }
set { WorldParameter.Value = value; }
}
public IntValue MaxTimeSteps {
get { return MaxTimeStepsParameter.Value; }
set { MaxTimeStepsParameter.Value = value; }
}
#endregion
public override bool Maximization {
get { return true; }
}
#region item cloning and persistence
// persistence
[StorableConstructor]
private Problem(StorableConstructorFlag _) : base(_) { }
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() { }
// cloning
private Problem(Problem original, Cloner cloner) : base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new Problem(this, cloner);
}
#endregion
public Problem()
: base() {
BoolMatrix world = new BoolMatrix(ToBoolMatrix(santaFeAntTrail));
Parameters.Add(new ValueParameter("World", "The world for the artificial ant with scattered food items.", world));
Parameters.Add(new ValueParameter("MaximumTimeSteps", "The number of time steps the artificial ant has available to collect all food items.", new IntValue(600)));
base.BestKnownQuality = 89;
var g = new SimpleSymbolicExpressionGrammar();
g.AddSymbols(new string[] { "IfFoodAhead", "Prog2" }, 2, 2);
g.AddSymbols(new string[] { "Prog3" }, 3, 3);
g.AddTerminalSymbols(new string[] { "Move", "Left", "Right" });
base.Encoding = new SymbolicExpressionTreeEncoding(g, 20, 10);
base.Encoding.GrammarParameter.ReadOnly = true;
}
public override double Evaluate(ISymbolicExpressionTree tree, IRandom random) {
var interpreter = new Interpreter(tree, World, MaxTimeSteps.Value);
interpreter.Run();
return interpreter.FoodEaten;
}
public override void Analyze(ISymbolicExpressionTree[] trees, double[] qualities, ResultCollection results, IRandom random) {
const string bestSolutionResultName = "Best Solution";
var bestQuality = Maximization ? qualities.Max() : qualities.Min();
var bestIdx = Array.IndexOf(qualities, bestQuality);
if (!results.ContainsKey(bestSolutionResultName)) {
results.Add(new Result(bestSolutionResultName, new Solution(World, trees[bestIdx], MaxTimeSteps.Value, qualities[bestIdx])));
} else if (((Solution)(results[bestSolutionResultName].Value)).Quality < qualities[bestIdx]) {
results[bestSolutionResultName].Value = new Solution(World, trees[bestIdx], MaxTimeSteps.Value, qualities[bestIdx]);
}
}
#region helpers
private bool[,] ToBoolMatrix(char[][] ch) {
var rows = ch.Length;
var cols = ch[0].Length;
var b = new bool[rows, cols];
for (int r = 0; r < rows; r++) {
Contract.Assert(ch[r].Length == cols); // all rows must have the same number of columns
for (int c = 0; c < cols; c++) {
b[r, c] = ch[r][c] == '#';
}
}
return b;
}
#endregion
}
}